Lactic acid bacteria modulate the CncC pathway to enhance resistance to β-cypermethrin in the oriental fruit fly

Tian Zeng, Qianyan Fu, Fangyi Luo, Jian Dai, Rong Fu, Yixiang Qi, Xiaojuan Deng, Yongyue Lu, Yijuan Xu
{"title":"Lactic acid bacteria modulate the CncC pathway to enhance resistance to β-cypermethrin in the oriental fruit fly","authors":"Tian Zeng, Qianyan Fu, Fangyi Luo, Jian Dai, Rong Fu, Yixiang Qi, Xiaojuan Deng, Yongyue Lu, Yijuan Xu","doi":"10.1093/ismejo/wrae058","DOIUrl":null,"url":null,"abstract":"The gut microbiota of insects has been shown to regulate host detoxification enzymes. However, the potential regulatory mechanisms involved remain unknown. Here, we report that gut bacteria increase insecticide resistance by activating the cap “n” collar isoform-C (CncC) pathway through enzymatically generated reactive oxygen species (ROS) in Bactrocera dorsalis. We demonstrated that Enterococcus casseliflavus and Lactococcus lactis, two lactic acid (LA)-producing bacteria, increase the resistance of B. dorsalis to β-cypermethrin by regulating cytochrome P450 (P450) enzymes and α-glutathione S-transferase (GST) activities. These gut symbionts also induced the expression of CncC and muscle aponeurosis fibromatosis (Maf). BdCncC knockdown led to a decrease in resistance caused by gut bacteria. Ingestion of the ROS scavenger vitamin C (VC) in resistant strain (RS) affected the expression of BdCncC/BdKeap1/BdMafK, resulting in reduced P450 and GST activity. Furthermore, feeding with E. casseliflavus or L. lactis showed that BdNOX5 increased ROS production, and BdNOX5 knockdown affected the expression of the BdCncC/BdMafK pathway and detoxification genes. Moreover, LA feeding activated the ROS-associated regulation of P450 and GST activity. Collectively, our findings indicate that symbiotic gut bacteria modulate intestinal detoxification pathways by affecting physiological biochemistry, thus providing new insights into the involvement of insect gut microbes in the development of insecticide resistance.","PeriodicalId":516554,"journal":{"name":"The ISME Journal","volume":"248 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The ISME Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismejo/wrae058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The gut microbiota of insects has been shown to regulate host detoxification enzymes. However, the potential regulatory mechanisms involved remain unknown. Here, we report that gut bacteria increase insecticide resistance by activating the cap “n” collar isoform-C (CncC) pathway through enzymatically generated reactive oxygen species (ROS) in Bactrocera dorsalis. We demonstrated that Enterococcus casseliflavus and Lactococcus lactis, two lactic acid (LA)-producing bacteria, increase the resistance of B. dorsalis to β-cypermethrin by regulating cytochrome P450 (P450) enzymes and α-glutathione S-transferase (GST) activities. These gut symbionts also induced the expression of CncC and muscle aponeurosis fibromatosis (Maf). BdCncC knockdown led to a decrease in resistance caused by gut bacteria. Ingestion of the ROS scavenger vitamin C (VC) in resistant strain (RS) affected the expression of BdCncC/BdKeap1/BdMafK, resulting in reduced P450 and GST activity. Furthermore, feeding with E. casseliflavus or L. lactis showed that BdNOX5 increased ROS production, and BdNOX5 knockdown affected the expression of the BdCncC/BdMafK pathway and detoxification genes. Moreover, LA feeding activated the ROS-associated regulation of P450 and GST activity. Collectively, our findings indicate that symbiotic gut bacteria modulate intestinal detoxification pathways by affecting physiological biochemistry, thus providing new insights into the involvement of insect gut microbes in the development of insecticide resistance.
乳酸菌调节 CncC 通路以增强东方果蝇对 β-氯氰菊酯的抗性
研究表明,昆虫的肠道微生物群能够调节宿主的解毒酶。然而,其中涉及的潜在调控机制仍然未知。在这里,我们报告了肠道细菌通过酶促产生的活性氧(ROS)激活帽 "n "领异构体-C(CncC)通路,从而增强背甲双壳虫对杀虫剂的抗性。我们证实,卡氏肠球菌(Enterococcus casseliflavus)和乳酸球菌(Lactococcus lactis)这两种乳酸(LA)生产菌通过调节细胞色素 P450(P450)酶和α-谷胱甘肽 S-转移酶(GST)的活性,提高了背甲线虫对β-氯氰菊酯的抗性。这些肠道共生菌还能诱导 CncC 和肌肉神经纤维瘤病(Maf)的表达。BdCncC 基因敲除导致肠道细菌引起的抵抗力下降。抗性菌株(RS)摄入 ROS 清除剂维生素 C(VC)会影响 BdCncC/BdKeap1/BdMafK 的表达,导致 P450 和 GST 活性降低。此外,用 E. casseliflavus 或 L. lactis 喂养显示 BdNOX5 增加了 ROS 的产生,而 BdNOX5 的敲除影响了 BdCncC/BdMafK 通路和解毒基因的表达。此外,LA饲喂激活了与ROS相关的P450和GST活性调节。总之,我们的研究结果表明,共生肠道细菌通过影响生理生化调节肠道解毒途径,从而为昆虫肠道微生物参与杀虫剂抗药性的产生提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信