Theta correspondence and simple factors in global Arthur parameters

IF 0.9 1区 数学 Q2 MATHEMATICS
Chenyan Wu
{"title":"Theta correspondence and simple factors in global Arthur parameters","authors":"Chenyan Wu","doi":"10.2140/ant.2024.18.969","DOIUrl":null,"url":null,"abstract":"<p>By using results on poles of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>L</mi></math>-functions and theta correspondence, we give a bound on <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>b</mi></math> for <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">(</mo><mi>χ</mi><mo>,</mo><mi>b</mi><mo stretchy=\"false\">)</mo></math>-factors of the global Arthur parameter of a cuspidal automorphic representation <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>π</mi></math> of a classical group or a metaplectic group where <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>χ</mi></math> is a conjugate self-dual automorphic character and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>b</mi></math> is an integer which is the dimension of an irreducible representation of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi> SL</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mn>2</mn></mrow></msub><mo stretchy=\"false\">(</mo><mi>ℂ</mi><mo stretchy=\"false\">)</mo></math>. We derive a more precise relation when <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>π</mi></math> lies in a generic global <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>A</mi></math>-packet. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"25 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2024.18.969","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

By using results on poles of L-functions and theta correspondence, we give a bound on b for (χ,b)-factors of the global Arthur parameter of a cuspidal automorphic representation π of a classical group or a metaplectic group where χ is a conjugate self-dual automorphic character and b is an integer which is the dimension of an irreducible representation of SL 2(). We derive a more precise relation when π lies in a generic global A-packet.

全局阿瑟参数中的 Theta 对应和简单因子
通过利用 L 函数极点和 Theta 对应的结果,我们给出了经典群或偏正群的尖顶自形表示 π 的全局阿瑟参数 (χ,b)- 因子的 b 约束,其中 χ 是共轭自偶自形特征,b 是一个整数,即 SL 2(ℂ) 不可还原表示的维数。当 π 位于一般全局 A 包中时,我们会推导出更精确的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
7.70%
发文量
52
审稿时长
6-12 weeks
期刊介绍: ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms. The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信