{"title":"Sulphate resistance of low-clinker engineered cementitious composites examined by MicroXRF imaging","authors":"Connor Szeto, Kimberly E. Kurtis","doi":"10.1111/jmi.13303","DOIUrl":null,"url":null,"abstract":"<p>Engineered cementitious composites (ECC) are a class of high-performing fibre-reinforced cementitious materials recognised for their increased ductility and durability compared to conventional cement-based materials, owing to their autogenously controlled tight crack widths, even when subjected to high strains. To reduce ECC's environmental impact, this research examines the use of a low-clinker binder − limestone-calcined clay cement (LC3) − as an alternative to portland cement (PC), along with fly ash to further reduce the clinker proportion and the embodied CO<sub>2</sub> of the formulations. In conventional concrete, LC3 hydrates to a denser microstructure resulting from the synergistic reaction between limestone and calcined clay. At the lower water contents typical of ECC and with the presence of fly ash, the influence of the binder composition on the microstructure is difficult to anticipate.</p><p>To examine the influence of these compositional variables on microstructure, permeability and durability, the sulphate resistance of LC3-based ECC is explored. Specifically, the ECC-LC3 blends are designed with high clinker replacement rate of 75% by mass of binder and contain either conventional fly ash or reclaimed fly ash at 50% by mass of binder. Expansion of ECC-LC3 samples subjected to standard sodium sulphate test conditions was measured up to 12 months and the depth of penetration of sulphates into the ECC-LC3 of varying compositions was quantified using micro-X-Ray Fluorescence (microXRF) imaging and modelling. The expansion results show that the ECC-LC3 formulations performed better than the PC samples and can provide adequate resistance to external sulphate attack, even when reclaimed fly ashes are used in place of the conventional ash. In addition, the shallow penetration of sulphate into these cementitious composites demonstrates the low diffusion coefficients values that were determined using the quantitative data from MicroXRF imaging.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jmi.13303","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jmi.13303","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Engineered cementitious composites (ECC) are a class of high-performing fibre-reinforced cementitious materials recognised for their increased ductility and durability compared to conventional cement-based materials, owing to their autogenously controlled tight crack widths, even when subjected to high strains. To reduce ECC's environmental impact, this research examines the use of a low-clinker binder − limestone-calcined clay cement (LC3) − as an alternative to portland cement (PC), along with fly ash to further reduce the clinker proportion and the embodied CO2 of the formulations. In conventional concrete, LC3 hydrates to a denser microstructure resulting from the synergistic reaction between limestone and calcined clay. At the lower water contents typical of ECC and with the presence of fly ash, the influence of the binder composition on the microstructure is difficult to anticipate.
To examine the influence of these compositional variables on microstructure, permeability and durability, the sulphate resistance of LC3-based ECC is explored. Specifically, the ECC-LC3 blends are designed with high clinker replacement rate of 75% by mass of binder and contain either conventional fly ash or reclaimed fly ash at 50% by mass of binder. Expansion of ECC-LC3 samples subjected to standard sodium sulphate test conditions was measured up to 12 months and the depth of penetration of sulphates into the ECC-LC3 of varying compositions was quantified using micro-X-Ray Fluorescence (microXRF) imaging and modelling. The expansion results show that the ECC-LC3 formulations performed better than the PC samples and can provide adequate resistance to external sulphate attack, even when reclaimed fly ashes are used in place of the conventional ash. In addition, the shallow penetration of sulphate into these cementitious composites demonstrates the low diffusion coefficients values that were determined using the quantitative data from MicroXRF imaging.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.