Ethan T. Iverson, Hsu-Cheng Chiang, Sarah G. Fisher, Hudson Legendre, Kendra Schmieg, Edward Chang, Jaime C. Grunlan
{"title":"Dual Clay Nanobrick Wall Thin Films with High Oxygen Barrier at High Humidity","authors":"Ethan T. Iverson, Hsu-Cheng Chiang, Sarah G. Fisher, Hudson Legendre, Kendra Schmieg, Edward Chang, Jaime C. Grunlan","doi":"10.1002/mame.202470007","DOIUrl":null,"url":null,"abstract":"<p><b>Front Cover</b>: The cover image of the article 2300407 by Jaime C. Grunlan and co-workers features a superimposed apple onto a micrograph of a 200 nm nanobrick wall created by layer-by-layer assembly. Oxygen molecules are unable to breach the barrier to spoil the apple. This film has one of the best oxygen permeability at low and high humidity, showing promise for protecting consumer goods.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"309 4","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202470007","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Materials and Engineering","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mame.202470007","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Front Cover: The cover image of the article 2300407 by Jaime C. Grunlan and co-workers features a superimposed apple onto a micrograph of a 200 nm nanobrick wall created by layer-by-layer assembly. Oxygen molecules are unable to breach the barrier to spoil the apple. This film has one of the best oxygen permeability at low and high humidity, showing promise for protecting consumer goods.
期刊介绍:
Macromolecular Materials and Engineering is the high-quality polymer science journal dedicated to the design, modification, characterization, processing and application of advanced polymeric materials, including membranes, sensors, sustainability, composites, fibers, foams, 3D printing, actuators as well as energy and electronic applications.
Macromolecular Materials and Engineering is among the top journals publishing original research in polymer science.
The journal presents strictly peer-reviewed Research Articles, Reviews, Perspectives and Comments.
ISSN: 1438-7492 (print). 1439-2054 (online).
Readership:Polymer scientists, chemists, physicists, materials scientists, engineers
Abstracting and Indexing Information:
CAS: Chemical Abstracts Service (ACS)
CCR Database (Clarivate Analytics)
Chemical Abstracts Service/SciFinder (ACS)
Chemistry Server Reaction Center (Clarivate Analytics)
ChemWeb (ChemIndustry.com)
Chimica Database (Elsevier)
COMPENDEX (Elsevier)
Current Contents: Physical, Chemical & Earth Sciences (Clarivate Analytics)
Directory of Open Access Journals (DOAJ)
INSPEC (IET)
Journal Citation Reports/Science Edition (Clarivate Analytics)
Materials Science & Engineering Database (ProQuest)
PASCAL Database (INIST/CNRS)
Polymer Library (iSmithers RAPRA)
Reaction Citation Index (Clarivate Analytics)
Science Citation Index (Clarivate Analytics)
Science Citation Index Expanded (Clarivate Analytics)
SciTech Premium Collection (ProQuest)
SCOPUS (Elsevier)
Technology Collection (ProQuest)
Web of Science (Clarivate Analytics)