{"title":"Upcycling prawn shells: Chitosan–carbon nanotube nanocomposites with boosted magnetic and electrical properties","authors":"Rabiul Awal, Md. Al-Mamun, Nasrin Jewena, Jahirul Islam Khandaker, Nilufer Yesmin Tanisa, Shamim Ahmed, Fahim Shahriar, Md. Mahbubul Haque","doi":"10.1049/mna2.12197","DOIUrl":null,"url":null,"abstract":"<p>Multi-walled carbon nanotubes (MWCNTs) were successfully synthesized and functionalized by chemical vapour deposition and acid reflux methods, respectively. Chitosan (CTS) was prepared by a chemical extraction method from waste prawn shells. Various weight fractions of functionalized multi-walled carbon nanotubes (f-MWCNTs) have been used as reinforcing agent in CTS biopolymer matrix. Fourier transform infrared spectroscopy analysis was done, which confirms the presence of absorption bands of the various functional groups of chitin, CTS, and MWCNTs. Raman spectra revealed the quality of MWCNTs, the extent of their functionalization, and the quality of nanocomposites. The X-ray diffraction analysis showed the distinctive peaks for f-MWCNTs’ and also revealed the formation of CTS/f-MWCNTs nanocomposites. Transmission Electron Microscopy (TEM) analysis also exhibited that the CTS/f-MWCNTs nanoparticles have a well-defined crystalline structure. The highest coercivity and magnetization (Ms) of the CTS/5%f-MWCNTs nanocomposite are 602 Oe and 0.1202 emu/g, respectively that have been enhanced by 3.83 and 5.27 times compared to the pure CTS respectively. It showed that the conductivity is getting higher with the addition of f-MWCNTs in the CTS matrix. CTS/5% f-MWCNTs composites exhibit the highest conductivity than other composites and the conductivity of CTS/5% f-MWCNTs composite is 4.0×10<sup>−4</sup> S/m.</p>","PeriodicalId":18398,"journal":{"name":"Micro & Nano Letters","volume":"19 3","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/mna2.12197","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro & Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/mna2.12197","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Multi-walled carbon nanotubes (MWCNTs) were successfully synthesized and functionalized by chemical vapour deposition and acid reflux methods, respectively. Chitosan (CTS) was prepared by a chemical extraction method from waste prawn shells. Various weight fractions of functionalized multi-walled carbon nanotubes (f-MWCNTs) have been used as reinforcing agent in CTS biopolymer matrix. Fourier transform infrared spectroscopy analysis was done, which confirms the presence of absorption bands of the various functional groups of chitin, CTS, and MWCNTs. Raman spectra revealed the quality of MWCNTs, the extent of their functionalization, and the quality of nanocomposites. The X-ray diffraction analysis showed the distinctive peaks for f-MWCNTs’ and also revealed the formation of CTS/f-MWCNTs nanocomposites. Transmission Electron Microscopy (TEM) analysis also exhibited that the CTS/f-MWCNTs nanoparticles have a well-defined crystalline structure. The highest coercivity and magnetization (Ms) of the CTS/5%f-MWCNTs nanocomposite are 602 Oe and 0.1202 emu/g, respectively that have been enhanced by 3.83 and 5.27 times compared to the pure CTS respectively. It showed that the conductivity is getting higher with the addition of f-MWCNTs in the CTS matrix. CTS/5% f-MWCNTs composites exhibit the highest conductivity than other composites and the conductivity of CTS/5% f-MWCNTs composite is 4.0×10−4 S/m.
期刊介绍:
Micro & Nano Letters offers express online publication of short research papers containing the latest advances in miniature and ultraminiature structures and systems. With an average of six weeks to decision, and publication online in advance of each issue, Micro & Nano Letters offers a rapid route for the international dissemination of high quality research findings from both the micro and nano communities.
Scope
Micro & Nano Letters offers express online publication of short research papers containing the latest advances in micro and nano-scale science, engineering and technology, with at least one dimension ranging from micrometers to nanometers. Micro & Nano Letters offers readers high-quality original research from both the micro and nano communities, and the materials and devices communities.
Bridging this gap between materials science and micro and nano-scale devices, Micro & Nano Letters addresses issues in the disciplines of engineering, physical, chemical, and biological science. It places particular emphasis on cross-disciplinary activities and applications.
Typical topics include:
Micro and nanostructures for the device communities
MEMS and NEMS
Modelling, simulation and realisation of micro and nanoscale structures, devices and systems, with comparisons to experimental data
Synthesis and processing
Micro and nano-photonics
Molecular machines, circuits and self-assembly
Organic and inorganic micro and nanostructures
Micro and nano-fluidics