Proof of a conjecture of Ballantine and Merca on truncated sums of 6-regular partitions

IF 0.9 2区 数学 Q2 MATHEMATICS
Olivia X.M. Yao
{"title":"Proof of a conjecture of Ballantine and Merca on truncated sums of 6-regular partitions","authors":"Olivia X.M. Yao","doi":"10.1016/j.jcta.2024.105903","DOIUrl":null,"url":null,"abstract":"<div><p>In 2012, Andrews and Merca proved a truncated theorem on Euler's pentagonal number theorem. Their work has opened up a new study of truncated series. Recently, Ballantine and Merca posed a conjecture on infinite families of inequalities involving <span><math><msub><mrow><mi>b</mi></mrow><mrow><mn>6</mn></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span>, which counts the number of 6-regular partitions of <em>n</em>. In this paper, we confirm Ballantine and Merca's conjecture on linear equalities of <span><math><msub><mrow><mi>b</mi></mrow><mrow><mn>6</mn></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> based on a formula of the number of partitions of <em>n</em> into parts not exceeding 3 due to Cayley.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"206 ","pages":"Article 105903"},"PeriodicalIF":0.9000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316524000426","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In 2012, Andrews and Merca proved a truncated theorem on Euler's pentagonal number theorem. Their work has opened up a new study of truncated series. Recently, Ballantine and Merca posed a conjecture on infinite families of inequalities involving b6(n), which counts the number of 6-regular partitions of n. In this paper, we confirm Ballantine and Merca's conjecture on linear equalities of b6(n) based on a formula of the number of partitions of n into parts not exceeding 3 due to Cayley.

巴兰坦和梅尔卡关于 6 不规则分区截断和的猜想的证明
2012 年,安德鲁斯和梅尔卡证明了欧拉五边形数定理的截断定理。他们的工作开启了截断数列的新研究。最近,Ballantine 和 Merca 提出了一个关于涉及 b6(n) 的无限不等式族的猜想,该猜想计算了 n 的 6 规则分区数。在本文中,我们根据 Cayley 提出的将 n 分成不超过 3 部分的公式,证实了 Ballantine 和 Merca 关于 b6(n) 线性等式的猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
9.10%
发文量
94
审稿时长
12 months
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信