The difference bidirectionality makes to the kinetic modeling of molecular catalysis

IF 7.9 2区 化学 Q1 CHEMISTRY, PHYSICAL
Andrea Fasano, Vincent Fourmond, Christophe Léger
{"title":"The difference bidirectionality makes to the kinetic modeling of molecular catalysis","authors":"Andrea Fasano,&nbsp;Vincent Fourmond,&nbsp;Christophe Léger","doi":"10.1016/j.coelec.2024.101489","DOIUrl":null,"url":null,"abstract":"<div><p>The quantitative modeling of voltammograms obtained with molecular redox catalysts is important for mechanistic studies and benchmarking. Most kinetic models developed for that purpose were based on unidirectional reaction mechanisms, but many redox enzymes work in both directions of the reaction, and chemists have recently successfully designed bidirectional, synthetic, molecular catalysts. An important conclusion from recent work is that unidirectional kinetic models should not be used to interpret bidirectional electrochemical responses. Understanding the latter will require much more work than simply adapting unidirectional models.</p></div>","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":null,"pages":null},"PeriodicalIF":7.9000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2451910324000504/pdfft?md5=9049964f495d08d054a7e7fbe866aad9&pid=1-s2.0-S2451910324000504-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Electrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451910324000504","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The quantitative modeling of voltammograms obtained with molecular redox catalysts is important for mechanistic studies and benchmarking. Most kinetic models developed for that purpose were based on unidirectional reaction mechanisms, but many redox enzymes work in both directions of the reaction, and chemists have recently successfully designed bidirectional, synthetic, molecular catalysts. An important conclusion from recent work is that unidirectional kinetic models should not be used to interpret bidirectional electrochemical responses. Understanding the latter will require much more work than simply adapting unidirectional models.

Abstract Image

双向性对分子催化动力学建模的影响
分子氧化还原催化剂伏安图的定量建模对于机理研究和基准设定非常重要。为此目的开发的大多数动力学模型都是基于单向反应机理,但许多氧化还原酶在反应的两个方向上都起作用,化学家们最近成功地设计出了双向合成分子催化剂。从最近的工作中得出的一个重要结论是,不应使用单向动力学模型来解释双向电化学反应。要理解双向电化学反应,需要做的工作远比简单地调整单向模型要多得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Opinion in Electrochemistry
Current Opinion in Electrochemistry Chemistry-Analytical Chemistry
CiteScore
14.00
自引率
5.90%
发文量
272
审稿时长
73 days
期刊介绍: The development of the Current Opinion journals stemmed from the acknowledgment of the growing challenge for specialists to stay abreast of the expanding volume of information within their field. In Current Opinion in Electrochemistry, they help the reader by providing in a systematic manner: 1.The views of experts on current advances in electrochemistry in a clear and readable form. 2.Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications. In the realm of electrochemistry, the subject is divided into 12 themed sections, with each section undergoing an annual review cycle: • Bioelectrochemistry • Electrocatalysis • Electrochemical Materials and Engineering • Energy Storage: Batteries and Supercapacitors • Energy Transformation • Environmental Electrochemistry • Fundamental & Theoretical Electrochemistry • Innovative Methods in Electrochemistry • Organic & Molecular Electrochemistry • Physical & Nano-Electrochemistry • Sensors & Bio-sensors •
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信