{"title":"Mahonian-Stirling statistics for partial permutations","authors":"Ming-Jian Ding , Jiang Zeng","doi":"10.1016/j.aam.2024.102702","DOIUrl":null,"url":null,"abstract":"<div><p>Recently Cheng et al. (2023) <span>[7]</span> generalized the inversion number to partial permutations, which are also known as Laguerre digraphs, and asked for a suitable analogue of MacMahon's major index. We provide such a major index, namely, the corresponding maj and inv statistics are equidistributed, and exhibit a Haglund-Remmel-Wilson type identity. We then interpret some Jacobi-Rogers polynomials in terms of Laguerre digraphs generalizing Deb and Sokal's alternating Laguerre digraph interpretation of some special Jacobi-Rogers polynomials.</p></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885824000332","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Recently Cheng et al. (2023) [7] generalized the inversion number to partial permutations, which are also known as Laguerre digraphs, and asked for a suitable analogue of MacMahon's major index. We provide such a major index, namely, the corresponding maj and inv statistics are equidistributed, and exhibit a Haglund-Remmel-Wilson type identity. We then interpret some Jacobi-Rogers polynomials in terms of Laguerre digraphs generalizing Deb and Sokal's alternating Laguerre digraph interpretation of some special Jacobi-Rogers polynomials.
期刊介绍:
Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas.
Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.