Efficient removal of per/polyfluoroalkyl substances from water using recyclable chitosan-coated covalent organic frameworks: Experimental and theoretical methods

IF 8.1 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Xue Zhang , Shiyi Wang , Xingyi Zhu , Donghai Zhu , Wei Wang , Bin Wang , Shubo Deng , Gang Yu
{"title":"Efficient removal of per/polyfluoroalkyl substances from water using recyclable chitosan-coated covalent organic frameworks: Experimental and theoretical methods","authors":"Xue Zhang ,&nbsp;Shiyi Wang ,&nbsp;Xingyi Zhu ,&nbsp;Donghai Zhu ,&nbsp;Wei Wang ,&nbsp;Bin Wang ,&nbsp;Shubo Deng ,&nbsp;Gang Yu","doi":"10.1016/j.chemosphere.2024.141942","DOIUrl":null,"url":null,"abstract":"<div><p>Covalent organic frameworks (COFs) demonstrate remarkable potential for adsorbing per/polyfluoroalkyl substances (PFAS). Nevertheless, the challenge of recycling powdered COFs hampers their practical application in water treatment. In this research, a quaternary amine COF with inherent positive surface charge was synthesised to adsorb perfluorooctanoic acid (PFOA) via electrostatic interactions. The COF was then combined with chitosan (CS) through a simple dissolution-evaporation process, resulting in a composite gel material termed COF@CS. The findings indicated that the adsorption capacity of COF@CS significantly surpassed that of the original COF and CS. According to the Langmuir model, COF@CS achieved a maximum PFOA capacity of 2.8 mmol g<sup>−1</sup> at pH 5. Furthermore, the adsorption rate increased significantly to 6.2 mmol g<sup>−1</sup> h<sup>−1</sup>, compared to 5.9 mmol g<sup>−1</sup> h<sup>−1</sup> for COF and 3.4 mmol g<sup>−1</sup> h<sup>−1</sup> for CS. Notably, COF@CS exhibited excellent removal efficacy for ten other types of PFAS. Moreover, COF@CS could be successfully regenerated using a mixture of 70% ethanol and 1 wt% NaCl, and it exhibited stable reusability for up to five cycles. X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) characterisation, and theoretical calculations revealed that the quaternary amine functional group in COF served as the primary adsorption site in the composite gel material, while the protonated amino group on CS enhanced PFOA adsorption through electrostatic interaction. This study highlights the significant practical potential of COF@CS in the removal of PFAS from aqueous solution and environmental remediation.</p></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"356 ","pages":"Article 141942"},"PeriodicalIF":8.1000,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosphere","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S004565352400835X","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Covalent organic frameworks (COFs) demonstrate remarkable potential for adsorbing per/polyfluoroalkyl substances (PFAS). Nevertheless, the challenge of recycling powdered COFs hampers their practical application in water treatment. In this research, a quaternary amine COF with inherent positive surface charge was synthesised to adsorb perfluorooctanoic acid (PFOA) via electrostatic interactions. The COF was then combined with chitosan (CS) through a simple dissolution-evaporation process, resulting in a composite gel material termed COF@CS. The findings indicated that the adsorption capacity of COF@CS significantly surpassed that of the original COF and CS. According to the Langmuir model, COF@CS achieved a maximum PFOA capacity of 2.8 mmol g−1 at pH 5. Furthermore, the adsorption rate increased significantly to 6.2 mmol g−1 h−1, compared to 5.9 mmol g−1 h−1 for COF and 3.4 mmol g−1 h−1 for CS. Notably, COF@CS exhibited excellent removal efficacy for ten other types of PFAS. Moreover, COF@CS could be successfully regenerated using a mixture of 70% ethanol and 1 wt% NaCl, and it exhibited stable reusability for up to five cycles. X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) characterisation, and theoretical calculations revealed that the quaternary amine functional group in COF served as the primary adsorption site in the composite gel material, while the protonated amino group on CS enhanced PFOA adsorption through electrostatic interaction. This study highlights the significant practical potential of COF@CS in the removal of PFAS from aqueous solution and environmental remediation.

Abstract Image

利用可回收壳聚糖涂层共价有机框架高效去除水中的全氟/聚氟烷基物质:实验和理论方法
共价有机框架(COFs)在吸附全氟烷基/聚氟烷基物质(PFAS)方面具有显著的潜力。然而,回收粉末 COFs 的难题阻碍了它们在水处理中的实际应用。在这项研究中,合成了一种具有固有正表面电荷的季胺 COF,可通过静电相互作用吸附全氟辛酸(PFOA)。然后,通过简单的溶解-蒸发过程,将 COF 与壳聚糖(CS)结合在一起,形成一种名为 COF@CS 的复合凝胶材料。研究结果表明,COF@CS 的吸附能力大大超过了原始 COF 和 CS 的吸附能力。此外,与 COF 的 5.9 mmol g-1 h-1 和 CS 的 3.4 mmol g-1 h-1 相比,吸附速率显著提高,达到 6.2 mmol g-1 h-1。值得注意的是,COF@CS 对其他十种全氟辛烷磺酸具有出色的去除效果。此外,COF@CS 还可以使用 70% 的乙醇和 1 wt% 的 NaCl 混合液成功再生,并且可以稳定地重复使用长达五个周期。X射线光电子能谱(XPS)、傅立叶变换红外光谱(FTIR)表征和理论计算显示,COF中的季胺官能团是复合凝胶材料的主要吸附位点,而CS上的质子化氨基则通过静电作用增强了对PFOA的吸附。这项研究凸显了 COF@CS 在去除水溶液中的全氟辛烷磺酸和修复环境方面的巨大实用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemosphere
Chemosphere 环境科学-环境科学
CiteScore
15.80
自引率
8.00%
发文量
4975
审稿时长
3.4 months
期刊介绍: Chemosphere, being an international multidisciplinary journal, is dedicated to publishing original communications and review articles on chemicals in the environment. The scope covers a wide range of topics, including the identification, quantification, behavior, fate, toxicology, treatment, and remediation of chemicals in the bio-, hydro-, litho-, and atmosphere, ensuring the broad dissemination of research in this field.
文献相关原料
公司名称
产品信息
阿拉丁
PFOA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信