{"title":"Terrestrial water storage in 2023","authors":"Bailing Li, Matthew Rodell","doi":"10.1038/s43017-024-00545-x","DOIUrl":null,"url":null,"abstract":"Global terrestrial water storage (TWS) anomalies reached a record low of –9.94 cm in 2023, decreasing 0.80 cm from 2022. These reductions largely reflect ongoing TWS losses from glacial melt and groundwater use for irrigation, offset by gains in central and eastern Antarctica and La Niña-related tropical wetting.","PeriodicalId":18921,"journal":{"name":"Nature Reviews Earth & Environment","volume":"5 4","pages":"247-249"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43017-024-00545-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Earth & Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43017-024-00545-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Global terrestrial water storage (TWS) anomalies reached a record low of –9.94 cm in 2023, decreasing 0.80 cm from 2022. These reductions largely reflect ongoing TWS losses from glacial melt and groundwater use for irrigation, offset by gains in central and eastern Antarctica and La Niña-related tropical wetting.