{"title":"Degree criteria and stability for independent transversals","authors":"Penny Haxell, Ronen Wdowinski","doi":"10.1002/jgt.23085","DOIUrl":null,"url":null,"abstract":"<p>An <i>independent transversal</i> (IT) in a graph <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> with a given vertex partition <span></span><math>\n <semantics>\n <mrow>\n <mi>P</mi>\n </mrow>\n <annotation> ${\\mathscr{P}}$</annotation>\n </semantics></math> is an independent set of vertices of <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> (i.e., it induces no edges), that consists of one vertex from each part (<i>block</i>) of <span></span><math>\n <semantics>\n <mrow>\n <mi>P</mi>\n </mrow>\n <annotation> ${\\mathscr{P}}$</annotation>\n </semantics></math>. Over the years, various criteria have been established that guarantee the existence of an IT, often given in terms of <span></span><math>\n <semantics>\n <mrow>\n <mi>P</mi>\n </mrow>\n <annotation> ${\\mathscr{P}}$</annotation>\n </semantics></math> being <span></span><math>\n <semantics>\n <mrow>\n <mi>t</mi>\n </mrow>\n <annotation> $t$</annotation>\n </semantics></math>-<i>thick</i>, meaning all blocks have size at least <span></span><math>\n <semantics>\n <mrow>\n <mi>t</mi>\n </mrow>\n <annotation> $t$</annotation>\n </semantics></math>. One such result, obtained recently by Wanless and Wood, is based on the <i>maximum average block degree</i> <span></span><math>\n <semantics>\n <mrow>\n <mi>b</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>G</mi>\n <mo>,</mo>\n <mi>P</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <mi>max</mi>\n <mrow>\n <mo>{</mo>\n <mrow>\n <msub>\n <mo>∑</mo>\n <mrow>\n <mi>u</mi>\n <mo>∈</mo>\n <mi>U</mi>\n </mrow>\n </msub>\n <mi>d</mi>\n <mrow>\n <mo>(</mo>\n <mi>u</mi>\n <mo>)</mo>\n </mrow>\n <mo>∕</mo>\n <mo>∣</mo>\n <mi>U</mi>\n <mo>∣</mo>\n <mo>:</mo>\n <mi>U</mi>\n <mo>∈</mo>\n <mi>P</mi>\n </mrow>\n <mo>}</mo>\n </mrow>\n </mrow>\n <annotation> $b(G,{\\mathscr{P}})=\\max \\{{\\sum }_{u\\in U}d(u)\\unicode{x02215}| U| :U\\in {\\mathscr{P}}\\}$</annotation>\n </semantics></math>. They proved that if <span></span><math>\n <semantics>\n <mrow>\n <mi>b</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>G</mi>\n <mo>,</mo>\n <mi>P</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n <mo>≤</mo>\n <mi>t</mi>\n <mo>∕</mo>\n <mn>4</mn>\n </mrow>\n <annotation> $b(G,{\\mathscr{P}})\\le t\\unicode{x02215}4$</annotation>\n </semantics></math> then an IT exists. Resolving a problem posed by Groenland, Kaiser, Treffers and Wales (who showed that the ratio 1/4 is best possible), here we give a full characterization of pairs <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>α</mi>\n <mo>,</mo>\n <mi>β</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $(\\alpha ,\\beta )$</annotation>\n </semantics></math> such that the following holds for every <span></span><math>\n <semantics>\n <mrow>\n <mi>t</mi>\n <mo>></mo>\n <mn>0</mn>\n </mrow>\n <annotation> $t\\gt 0$</annotation>\n </semantics></math>: whenever <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is a graph with maximum degree <span></span><math>\n <semantics>\n <mrow>\n <mi>Δ</mi>\n <mrow>\n <mo>(</mo>\n <mi>G</mi>\n <mo>)</mo>\n </mrow>\n <mo>≤</mo>\n <mi>α</mi>\n <mi>t</mi>\n </mrow>\n <annotation> ${\\rm{\\Delta }}(G)\\le \\alpha t$</annotation>\n </semantics></math>, and <span></span><math>\n <semantics>\n <mrow>\n <mi>P</mi>\n </mrow>\n <annotation> ${\\mathscr{P}}$</annotation>\n </semantics></math> is a <span></span><math>\n <semantics>\n <mrow>\n <mi>t</mi>\n </mrow>\n <annotation> $t$</annotation>\n </semantics></math>-thick vertex partition of <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> such that <span></span><math>\n <semantics>\n <mrow>\n <mi>b</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>G</mi>\n <mo>,</mo>\n <mi>P</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n <mo>≤</mo>\n <mi>β</mi>\n <mi>t</mi>\n </mrow>\n <annotation> $b(G,{\\mathscr{P}})\\le \\beta t$</annotation>\n </semantics></math>, there exists an IT of <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> with respect to <span></span><math>\n <semantics>\n <mrow>\n <mi>P</mi>\n </mrow>\n <annotation> ${\\mathscr{P}}$</annotation>\n </semantics></math>. Our proof makes use of another previously known criterion for the existence of ITs that involve the topological connectedness of the independence complex of graphs, and establishes a general technical theorem on the structure of graphs for which this parameter is bounded above by a known quantity. Our result interpolates between the criterion <span></span><math>\n <semantics>\n <mrow>\n <mi>b</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>G</mi>\n <mo>,</mo>\n <mi>P</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n <mo>≤</mo>\n <mi>t</mi>\n <mo>∕</mo>\n <mn>4</mn>\n </mrow>\n <annotation> $b(G,{\\mathscr{P}})\\le t\\unicode{x02215}4$</annotation>\n </semantics></math> and the old and frequently applied theorem that if <span></span><math>\n <semantics>\n <mrow>\n <mi>Δ</mi>\n <mrow>\n <mo>(</mo>\n <mi>G</mi>\n <mo>)</mo>\n </mrow>\n <mo>≤</mo>\n <mi>t</mi>\n <mo>∕</mo>\n <mn>2</mn>\n </mrow>\n <annotation> ${\\rm{\\Delta }}(G)\\le t\\unicode{x02215}2$</annotation>\n </semantics></math> then an IT exists. Using the same approach, we also extend a theorem of Aharoni, Holzman, Howard and Sprüssel, by giving a stability version of the latter result.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23085","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
An independent transversal (IT) in a graph with a given vertex partition is an independent set of vertices of (i.e., it induces no edges), that consists of one vertex from each part (block) of . Over the years, various criteria have been established that guarantee the existence of an IT, often given in terms of being -thick, meaning all blocks have size at least . One such result, obtained recently by Wanless and Wood, is based on the maximum average block degree . They proved that if then an IT exists. Resolving a problem posed by Groenland, Kaiser, Treffers and Wales (who showed that the ratio 1/4 is best possible), here we give a full characterization of pairs such that the following holds for every : whenever is a graph with maximum degree , and is a -thick vertex partition of such that , there exists an IT of with respect to . Our proof makes use of another previously known criterion for the existence of ITs that involve the topological connectedness of the independence complex of graphs, and establishes a general technical theorem on the structure of graphs for which this parameter is bounded above by a known quantity. Our result interpolates between the criterion and the old and frequently applied theorem that if then an IT exists. Using the same approach, we also extend a theorem of Aharoni, Holzman, Howard and Sprüssel, by giving a stability version of the latter result.
具有给定顶点分区 P ${mathscr{P}}$ 的图 G $G$ 中的独立横向(IT)是 G $G$ 的一个独立顶点集合(即它不引起任何边),它由 P ${\mathscr{P}}$ 的每个部分(块)的一个顶点组成。多年来,人们建立了各种标准来保证 IT 的存在,这些标准通常以 P ${mathscr{P}}$ 厚度为 t $t$ 的条件给出,即所有块的大小至少为 t $t$。其中一个结果是 Wanless 和 Wood 最近得到的,它基于最大平均块度 b ( G , P ) = max { ∑ u∈ U d ( u ) ∕ ∣ U ∣ : U∈ P }。 $b(G,{\mathscr{P}})=\max \{\{sum }_{u\in U}d(u)\unicode{x02215}| U| :U\in {\mathscr{P}}\}$ 。他们证明了如果 b ( G , P ) ≤ t ∕ 4 $b(G,{\mathscr{P}})\le t\unicode{x02215}4$ 则存在一个 IT。