Degree criteria and stability for independent transversals

IF 0.9 3区 数学 Q2 MATHEMATICS
Penny Haxell, Ronen Wdowinski
{"title":"Degree criteria and stability for independent transversals","authors":"Penny Haxell,&nbsp;Ronen Wdowinski","doi":"10.1002/jgt.23085","DOIUrl":null,"url":null,"abstract":"<p>An <i>independent transversal</i> (IT) in a graph <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> with a given vertex partition <span></span><math>\n <semantics>\n <mrow>\n <mi>P</mi>\n </mrow>\n <annotation> ${\\mathscr{P}}$</annotation>\n </semantics></math> is an independent set of vertices of <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> (i.e., it induces no edges), that consists of one vertex from each part (<i>block</i>) of <span></span><math>\n <semantics>\n <mrow>\n <mi>P</mi>\n </mrow>\n <annotation> ${\\mathscr{P}}$</annotation>\n </semantics></math>. Over the years, various criteria have been established that guarantee the existence of an IT, often given in terms of <span></span><math>\n <semantics>\n <mrow>\n <mi>P</mi>\n </mrow>\n <annotation> ${\\mathscr{P}}$</annotation>\n </semantics></math> being <span></span><math>\n <semantics>\n <mrow>\n <mi>t</mi>\n </mrow>\n <annotation> $t$</annotation>\n </semantics></math>-<i>thick</i>, meaning all blocks have size at least <span></span><math>\n <semantics>\n <mrow>\n <mi>t</mi>\n </mrow>\n <annotation> $t$</annotation>\n </semantics></math>. One such result, obtained recently by Wanless and Wood, is based on the <i>maximum average block degree</i> <span></span><math>\n <semantics>\n <mrow>\n <mi>b</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>G</mi>\n <mo>,</mo>\n <mi>P</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <mi>max</mi>\n <mrow>\n <mo>{</mo>\n <mrow>\n <msub>\n <mo>∑</mo>\n <mrow>\n <mi>u</mi>\n <mo>∈</mo>\n <mi>U</mi>\n </mrow>\n </msub>\n <mi>d</mi>\n <mrow>\n <mo>(</mo>\n <mi>u</mi>\n <mo>)</mo>\n </mrow>\n <mo>∕</mo>\n <mo>∣</mo>\n <mi>U</mi>\n <mo>∣</mo>\n <mo>:</mo>\n <mi>U</mi>\n <mo>∈</mo>\n <mi>P</mi>\n </mrow>\n <mo>}</mo>\n </mrow>\n </mrow>\n <annotation> $b(G,{\\mathscr{P}})=\\max \\{{\\sum }_{u\\in U}d(u)\\unicode{x02215}| U| :U\\in {\\mathscr{P}}\\}$</annotation>\n </semantics></math>. They proved that if <span></span><math>\n <semantics>\n <mrow>\n <mi>b</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>G</mi>\n <mo>,</mo>\n <mi>P</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n <mo>≤</mo>\n <mi>t</mi>\n <mo>∕</mo>\n <mn>4</mn>\n </mrow>\n <annotation> $b(G,{\\mathscr{P}})\\le t\\unicode{x02215}4$</annotation>\n </semantics></math> then an IT exists. Resolving a problem posed by Groenland, Kaiser, Treffers and Wales (who showed that the ratio 1/4 is best possible), here we give a full characterization of pairs <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>α</mi>\n <mo>,</mo>\n <mi>β</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $(\\alpha ,\\beta )$</annotation>\n </semantics></math> such that the following holds for every <span></span><math>\n <semantics>\n <mrow>\n <mi>t</mi>\n <mo>&gt;</mo>\n <mn>0</mn>\n </mrow>\n <annotation> $t\\gt 0$</annotation>\n </semantics></math>: whenever <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is a graph with maximum degree <span></span><math>\n <semantics>\n <mrow>\n <mi>Δ</mi>\n <mrow>\n <mo>(</mo>\n <mi>G</mi>\n <mo>)</mo>\n </mrow>\n <mo>≤</mo>\n <mi>α</mi>\n <mi>t</mi>\n </mrow>\n <annotation> ${\\rm{\\Delta }}(G)\\le \\alpha t$</annotation>\n </semantics></math>, and <span></span><math>\n <semantics>\n <mrow>\n <mi>P</mi>\n </mrow>\n <annotation> ${\\mathscr{P}}$</annotation>\n </semantics></math> is a <span></span><math>\n <semantics>\n <mrow>\n <mi>t</mi>\n </mrow>\n <annotation> $t$</annotation>\n </semantics></math>-thick vertex partition of <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> such that <span></span><math>\n <semantics>\n <mrow>\n <mi>b</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>G</mi>\n <mo>,</mo>\n <mi>P</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n <mo>≤</mo>\n <mi>β</mi>\n <mi>t</mi>\n </mrow>\n <annotation> $b(G,{\\mathscr{P}})\\le \\beta t$</annotation>\n </semantics></math>, there exists an IT of <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> with respect to <span></span><math>\n <semantics>\n <mrow>\n <mi>P</mi>\n </mrow>\n <annotation> ${\\mathscr{P}}$</annotation>\n </semantics></math>. Our proof makes use of another previously known criterion for the existence of ITs that involve the topological connectedness of the independence complex of graphs, and establishes a general technical theorem on the structure of graphs for which this parameter is bounded above by a known quantity. Our result interpolates between the criterion <span></span><math>\n <semantics>\n <mrow>\n <mi>b</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>G</mi>\n <mo>,</mo>\n <mi>P</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n <mo>≤</mo>\n <mi>t</mi>\n <mo>∕</mo>\n <mn>4</mn>\n </mrow>\n <annotation> $b(G,{\\mathscr{P}})\\le t\\unicode{x02215}4$</annotation>\n </semantics></math> and the old and frequently applied theorem that if <span></span><math>\n <semantics>\n <mrow>\n <mi>Δ</mi>\n <mrow>\n <mo>(</mo>\n <mi>G</mi>\n <mo>)</mo>\n </mrow>\n <mo>≤</mo>\n <mi>t</mi>\n <mo>∕</mo>\n <mn>2</mn>\n </mrow>\n <annotation> ${\\rm{\\Delta }}(G)\\le t\\unicode{x02215}2$</annotation>\n </semantics></math> then an IT exists. Using the same approach, we also extend a theorem of Aharoni, Holzman, Howard and Sprüssel, by giving a stability version of the latter result.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"106 2","pages":"352-371"},"PeriodicalIF":0.9000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23085","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23085","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

An independent transversal (IT) in a graph G $G$ with a given vertex partition P ${\mathscr{P}}$ is an independent set of vertices of G $G$ (i.e., it induces no edges), that consists of one vertex from each part (block) of P ${\mathscr{P}}$ . Over the years, various criteria have been established that guarantee the existence of an IT, often given in terms of P ${\mathscr{P}}$ being t $t$ -thick, meaning all blocks have size at least t $t$ . One such result, obtained recently by Wanless and Wood, is based on the maximum average block degree b ( G , P ) = max { u U d ( u ) U : U P } $b(G,{\mathscr{P}})=\max \{{\sum }_{u\in U}d(u)\unicode{x02215}| U| :U\in {\mathscr{P}}\}$ . They proved that if b ( G , P ) t 4 $b(G,{\mathscr{P}})\le t\unicode{x02215}4$ then an IT exists. Resolving a problem posed by Groenland, Kaiser, Treffers and Wales (who showed that the ratio 1/4 is best possible), here we give a full characterization of pairs ( α , β ) $(\alpha ,\beta )$ such that the following holds for every t > 0 $t\gt 0$ : whenever G $G$ is a graph with maximum degree Δ ( G ) α t ${\rm{\Delta }}(G)\le \alpha t$ , and P ${\mathscr{P}}$ is a t $t$ -thick vertex partition of G $G$ such that b ( G , P ) β t $b(G,{\mathscr{P}})\le \beta t$ , there exists an IT of G $G$ with respect to P ${\mathscr{P}}$ . Our proof makes use of another previously known criterion for the existence of ITs that involve the topological connectedness of the independence complex of graphs, and establishes a general technical theorem on the structure of graphs for which this parameter is bounded above by a known quantity. Our result interpolates between the criterion b ( G , P ) t 4 $b(G,{\mathscr{P}})\le t\unicode{x02215}4$ and the old and frequently applied theorem that if Δ ( G ) t 2 ${\rm{\Delta }}(G)\le t\unicode{x02215}2$ then an IT exists. Using the same approach, we also extend a theorem of Aharoni, Holzman, Howard and Sprüssel, by giving a stability version of the latter result.

Abstract Image

独立横轴的度数标准和稳定性
具有给定顶点分区 P ${mathscr{P}}$ 的图 G $G$ 中的独立横向(IT)是 G $G$ 的一个独立顶点集合(即它不引起任何边),它由 P ${\mathscr{P}}$ 的每个部分(块)的一个顶点组成。多年来,人们建立了各种标准来保证 IT 的存在,这些标准通常以 P ${mathscr{P}}$ 厚度为 t $t$ 的条件给出,即所有块的大小至少为 t $t$。其中一个结果是 Wanless 和 Wood 最近得到的,它基于最大平均块度 b ( G , P ) = max { ∑ u∈ U d ( u ) ∕ ∣ U ∣ : U∈ P }。 $b(G,{\mathscr{P}})=\max \{\{sum }_{u\in U}d(u)\unicode{x02215}| U| :U\in {\mathscr{P}}\}$ 。他们证明了如果 b ( G , P ) ≤ t ∕ 4 $b(G,{\mathscr{P}})\le t\unicode{x02215}4$ 则存在一个 IT。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信