Leaf habit differentiation explains trait tradeoffs across savanna woody plants

IF 3.8 1区 农林科学 Q1 FORESTRY
Yangsiding Wang , Da Yang , German Vargas G. , Guangyou Hao , Jennifer S. Powers , Yan Ke , Qin Wang , Yunbing Zhang , Jiaolin Zhang
{"title":"Leaf habit differentiation explains trait tradeoffs across savanna woody plants","authors":"Yangsiding Wang ,&nbsp;Da Yang ,&nbsp;German Vargas G. ,&nbsp;Guangyou Hao ,&nbsp;Jennifer S. Powers ,&nbsp;Yan Ke ,&nbsp;Qin Wang ,&nbsp;Yunbing Zhang ,&nbsp;Jiaolin Zhang","doi":"10.1016/j.fecs.2024.100190","DOIUrl":null,"url":null,"abstract":"<div><p>Identifying how leaf habit subdivisions link to the fast–slow and avoidance–tolerance trait tradeoffs can provide new insight into divergence in ecophysiological strategies among plant functional groups. Here, we tested a hypothesis that the differentiation across deciduous, semi-deciduous and evergreen woody species contributes to physiological trait tradeoffs in a dry-hot valley savanna. We investigated 11 photosynthetic, morphological and hydraulic traits of 24 species including 8 deciduous, 10 semi-deciduous and 6 evergreen species. Deciduous species were grouped in the fast and avoidance side associated with high values of maximum photosynthetic rates, stomatal conductance and leaf size, while evergreen species were grouped in the slow and tolerance side associated with high photosynthetic water use efficiency, leaf mass per area, sapwood density, Huber value, leaf water potential at turgor loss point and water potential causing 50% loss of stem hydraulic conductance. Semi-deciduous species generally had intermediate trait values and represented different physiological characteristics when compared to deciduous and evergreen species. The physiological trait tradeoffs showed a close linkage to the differentiation of these three leaf habits. Our findings clearly reveal trait tradeoffs related to fast–slow and avoidance–tolerance strategies among diverse savanna plants, suggesting a syndrome in multiple ecophysiology strategies across different leaf habits.</p></div>","PeriodicalId":54270,"journal":{"name":"Forest Ecosystems","volume":"11 ","pages":"Article 100190"},"PeriodicalIF":3.8000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2197562024000265/pdfft?md5=3f4fd3779e4b6f0aa88fdbb309323671&pid=1-s2.0-S2197562024000265-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forest Ecosystems","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2197562024000265","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Identifying how leaf habit subdivisions link to the fast–slow and avoidance–tolerance trait tradeoffs can provide new insight into divergence in ecophysiological strategies among plant functional groups. Here, we tested a hypothesis that the differentiation across deciduous, semi-deciduous and evergreen woody species contributes to physiological trait tradeoffs in a dry-hot valley savanna. We investigated 11 photosynthetic, morphological and hydraulic traits of 24 species including 8 deciduous, 10 semi-deciduous and 6 evergreen species. Deciduous species were grouped in the fast and avoidance side associated with high values of maximum photosynthetic rates, stomatal conductance and leaf size, while evergreen species were grouped in the slow and tolerance side associated with high photosynthetic water use efficiency, leaf mass per area, sapwood density, Huber value, leaf water potential at turgor loss point and water potential causing 50% loss of stem hydraulic conductance. Semi-deciduous species generally had intermediate trait values and represented different physiological characteristics when compared to deciduous and evergreen species. The physiological trait tradeoffs showed a close linkage to the differentiation of these three leaf habits. Our findings clearly reveal trait tradeoffs related to fast–slow and avoidance–tolerance strategies among diverse savanna plants, suggesting a syndrome in multiple ecophysiology strategies across different leaf habits.

叶片习性分化解释了热带稀树草原木本植物的性状权衡
确定叶片习性的细分如何与快-慢和回避-耐受的性状权衡联系起来,可以为了解植物功能群之间生态生理策略的差异提供新的视角。在这里,我们检验了一个假设,即落叶、半落叶和常绿木本物种的分化有助于干热河谷稀树草原中生理性状的权衡。我们研究了 24 个物种(包括 8 个落叶物种、10 个半落叶物种和 6 个常绿物种)的 11 个光合、形态和水力特征。落叶树种属于快速和回避型,与最大光合速率、气孔导度和叶片大小的高值有关;常绿树种属于缓慢和耐受型,与光合作用水分利用效率、单位面积叶片质量、边材密度、胡伯值、失去张力点的叶片水势和导致茎水导损失 50%的水势有关。与落叶树种和常绿树种相比,半落叶树种的性状值一般处于中间水平,代表了不同的生理特征。生理性状的权衡与这三种叶片习性的分化密切相关。我们的研究结果清楚地揭示了不同热带稀树草原植物中与快-慢和回避-耐受策略有关的性状权衡,表明不同叶片习性之间存在多种生态生理策略的综合征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Forest Ecosystems
Forest Ecosystems Environmental Science-Nature and Landscape Conservation
CiteScore
7.10
自引率
4.90%
发文量
1115
审稿时长
22 days
期刊介绍: Forest Ecosystems is an open access, peer-reviewed journal publishing scientific communications from any discipline that can provide interesting contributions about the structure and dynamics of "natural" and "domesticated" forest ecosystems, and their services to people. The journal welcomes innovative science as well as application oriented work that will enhance understanding of woody plant communities. Very specific studies are welcome if they are part of a thematic series that provides some holistic perspective that is of general interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信