Up with Categories, Down with Sets; Out with Categories, In with Sets!

IF 0.8 1区 哲学 Q2 HISTORY & PHILOSOPHY OF SCIENCE
Jonathan Kirby
{"title":"Up with Categories, Down with Sets; Out with Categories, In with Sets!","authors":"Jonathan Kirby","doi":"10.1093/philmat/nkae010","DOIUrl":null,"url":null,"abstract":"Practical approaches to the notions of subsets and extension sets are compared, coming from broadly set-theoretic and category-theoretic traditions of mathematics. I argue that the set-theoretic approach is the most practical for ‘looking down’ or ‘in’ at subsets and the category-theoretic approach is the most practical for ‘looking up’ or ‘out’ at extensions, and suggest some guiding principles for using these approaches without recourse to either category theory or axiomatic set theory.","PeriodicalId":49004,"journal":{"name":"Philosophia Mathematica","volume":"108 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophia Mathematica","FirstCategoryId":"98","ListUrlMain":"https://doi.org/10.1093/philmat/nkae010","RegionNum":1,"RegionCategory":"哲学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HISTORY & PHILOSOPHY OF SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Practical approaches to the notions of subsets and extension sets are compared, coming from broadly set-theoretic and category-theoretic traditions of mathematics. I argue that the set-theoretic approach is the most practical for ‘looking down’ or ‘in’ at subsets and the category-theoretic approach is the most practical for ‘looking up’ or ‘out’ at extensions, and suggest some guiding principles for using these approaches without recourse to either category theory or axiomatic set theory.
分类向上,集合向下;分类向外,集合向内!
本文比较了来自广义集合论和范畴论数学传统的子集和外延集概念的实用方法。我认为,对于 "向下 "或 "向内 "看子集,集合论方法是最实用的;而对于 "向上 "或 "向外 "看扩展集,范畴论方法是最实用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Philosophia Mathematica
Philosophia Mathematica HISTORY & PHILOSOPHY OF SCIENCE-
CiteScore
1.70
自引率
9.10%
发文量
26
审稿时长
>12 weeks
期刊介绍: Philosophia Mathematica is the only journal in the world devoted specifically to philosophy of mathematics. The journal publishes peer-reviewed new work in philosophy of mathematics, the application of mathematics, and computing. In addition to main articles, sometimes grouped on a single theme, there are shorter discussion notes, letters, and book reviews. The journal is published online-only, with three issues published per year.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信