{"title":"Material removal rate model for chemical–mechanical polishing of single-crystal SiC substrates using agglomerated diamond abrasive","authors":"Pengfei Wu, Ning Liu, Xue Li, Yongwei Zhu","doi":"10.1016/j.precisioneng.2024.04.002","DOIUrl":null,"url":null,"abstract":"<div><p>Material removal mechanisms are essential for the selection of polishing slurries and parameter optimization of chemical–mechanical polishing (CMP) processes. This study established a material removal rate (MRR) model for CMP of single-crystal SiC substrates using a fixed agglomerated diamond (AD) abrasive pad (FADAP). The distribution of the polishing pressure between the AD abrasive and FADAP matrix was examined, and the influence of the abrasive and polishing parameters on the MRR was revealed. Furthermore, single-factor experiments were conducted to validate the rationality of the MRR model. The experiments demonstrated that when the thickness of the surface-affected layer of the single-crystal SiC substrate in the MRR model was set to 5 nm, the error between the calculated and experimental values of the model could be controlled to within 20%. This result experimentally verified the validity of the MRR model and its associated assumptions. Moreover, the MRR of the CMP process of a single-crystal SiC substrate reached 36.26 μm/h with a polishing pressure of 27.6 kPa and an AD abrasive primary particle size range of 7–10 μm. Therefore, the feasibility of efficiently processing single-crystal SiC substrates using an FADAP was theoretically confirmed.</p></div>","PeriodicalId":54589,"journal":{"name":"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology","volume":"88 ","pages":"Pages 572-583"},"PeriodicalIF":3.7000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141635924000667","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Material removal mechanisms are essential for the selection of polishing slurries and parameter optimization of chemical–mechanical polishing (CMP) processes. This study established a material removal rate (MRR) model for CMP of single-crystal SiC substrates using a fixed agglomerated diamond (AD) abrasive pad (FADAP). The distribution of the polishing pressure between the AD abrasive and FADAP matrix was examined, and the influence of the abrasive and polishing parameters on the MRR was revealed. Furthermore, single-factor experiments were conducted to validate the rationality of the MRR model. The experiments demonstrated that when the thickness of the surface-affected layer of the single-crystal SiC substrate in the MRR model was set to 5 nm, the error between the calculated and experimental values of the model could be controlled to within 20%. This result experimentally verified the validity of the MRR model and its associated assumptions. Moreover, the MRR of the CMP process of a single-crystal SiC substrate reached 36.26 μm/h with a polishing pressure of 27.6 kPa and an AD abrasive primary particle size range of 7–10 μm. Therefore, the feasibility of efficiently processing single-crystal SiC substrates using an FADAP was theoretically confirmed.
期刊介绍:
Precision Engineering - Journal of the International Societies for Precision Engineering and Nanotechnology is devoted to the multidisciplinary study and practice of high accuracy engineering, metrology, and manufacturing. The journal takes an integrated approach to all subjects related to research, design, manufacture, performance validation, and application of high precision machines, instruments, and components, including fundamental and applied research and development in manufacturing processes, fabrication technology, and advanced measurement science. The scope includes precision-engineered systems and supporting metrology over the full range of length scales, from atom-based nanotechnology and advanced lithographic technology to large-scale systems, including optical and radio telescopes and macrometrology.