Cubic factor-invariant graphs of cycle quotient type—The alternating case

IF 1 3区 数学 Q1 MATHEMATICS
Brian Alspach , Primož Šparl
{"title":"Cubic factor-invariant graphs of cycle quotient type—The alternating case","authors":"Brian Alspach ,&nbsp;Primož Šparl","doi":"10.1016/j.ejc.2024.103964","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate connected cubic vertex-transitive graphs whose edge sets admit a partition into a 2-factor <span><math><mi>C</mi></math></span> and a 1-factor that is invariant under a vertex-transitive subgroup of the automorphism group of the graph and where the quotient graph with respect to <span><math><mi>C</mi></math></span> is a cycle. There are two essentially different types of such cubic graphs. In this paper we focus on the examples of what we call the alternating type. We classify all such examples admitting a vertex-transitive subgroup of the automorphism group of the graph preserving the corresponding 2-factor and also determine the ones for which the 2-factor is invariant under the full automorphism group of the graph. In this way we introduce a new infinite family of cubic vertex-transitive graphs that is a natural generalization of the well-known generalized Petersen graphs as well as of the honeycomb toroidal graphs. The family contains an infinite subfamily of arc-regular examples and an infinite subfamily of 2-arc-regular examples.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0195669824000490/pdfft?md5=9aafdb85196268b7bd37d9ff8366aa0b&pid=1-s2.0-S0195669824000490-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669824000490","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate connected cubic vertex-transitive graphs whose edge sets admit a partition into a 2-factor C and a 1-factor that is invariant under a vertex-transitive subgroup of the automorphism group of the graph and where the quotient graph with respect to C is a cycle. There are two essentially different types of such cubic graphs. In this paper we focus on the examples of what we call the alternating type. We classify all such examples admitting a vertex-transitive subgroup of the automorphism group of the graph preserving the corresponding 2-factor and also determine the ones for which the 2-factor is invariant under the full automorphism group of the graph. In this way we introduce a new infinite family of cubic vertex-transitive graphs that is a natural generalization of the well-known generalized Petersen graphs as well as of the honeycomb toroidal graphs. The family contains an infinite subfamily of arc-regular examples and an infinite subfamily of 2-arc-regular examples.

循环商类型的立方因子不变图--交替情况
我们研究了连通的立方顶点传递图,这些图的边集可以划分为一个 2 因子 C 和一个 1 因子,后者在图的自动变形群的顶点传递子群下不变,并且相对于 C 的商图是一个循环。这种立方图有两种本质上不同的类型。在本文中,我们将重点讨论我们称之为交替类型的例子。我们会对所有这样的例子进行分类,这些例子中的图的自变群的顶点传递子群会保留相应的 2 因子,同时我们还会确定哪些例子的 2 因子在图的全自变群下是不变的。通过这种方法,我们引入了一个新的无穷立方顶点传递图族,它是著名的广义彼得森图和蜂巢环形图的自然概括。该族包含一个弧不规则的无限子族和一个2-弧不规则的无限子族。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信