A Brualdi–Hoffman–Turán problem on cycles

IF 1 3区 数学 Q1 MATHEMATICS
Xin Li , Mingqing Zhai , Jinlong Shu
{"title":"A Brualdi–Hoffman–Turán problem on cycles","authors":"Xin Li ,&nbsp;Mingqing Zhai ,&nbsp;Jinlong Shu","doi":"10.1016/j.ejc.2024.103966","DOIUrl":null,"url":null,"abstract":"<div><p>Brualdi–Hoffman–Turán-type problem asks what is the maximum spectral radius <span><math><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> of an <span><math><mi>H</mi></math></span>-free graph <span><math><mi>G</mi></math></span> on <span><math><mi>m</mi></math></span> edges? This problem gives a spectral perspective on the existence of a subgraph <span><math><mi>H</mi></math></span>. A significant result, due to Nikiforov, states that <span><math><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><msqrt><mrow><mn>2</mn><mi>m</mi><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>r</mi></mrow></mfrac><mo>)</mo></mrow></mrow></msqrt></mrow></math></span> for every <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>-free graph <span><math><mi>G</mi></math></span> (Nikiforov, 2002). Bollobás and Nikiforov further conjectured <span><math><mrow><msubsup><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></msubsup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>+</mo><msubsup><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow><mrow><mn>2</mn></mrow></msubsup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mn>2</mn><mi>m</mi><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>r</mi></mrow></mfrac><mo>)</mo></mrow></mrow></math></span> for every <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>-free graph <span><math><mi>G</mi></math></span> (Bollobás and Nikiforov, 2007). Let <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mi>k</mi></mrow><mrow><mo>+</mo></mrow></msubsup></math></span> denote the graph obtained from a <span><math><mi>k</mi></math></span>-cycle by adding a chord between two vertices of distance two. Zhai, Lin and Shu conjectured that for <span><math><mrow><mi>k</mi><mo>≥</mo><mn>2</mn></mrow></math></span> and <span><math><mi>m</mi></math></span> sufficiently large, if <span><math><mi>G</mi></math></span> is a <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>-free or <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>2</mn></mrow></msub></math></span>-free graph, then <span><math><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mfrac><mrow><mi>k</mi><mo>−</mo><mn>1</mn><mo>+</mo><msqrt><mrow><mn>4</mn><mi>m</mi><mo>−</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>1</mn></mrow></msqrt></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></math></span>, with equality if and only if <span><math><mrow><mi>G</mi><mo>≅</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>∇</mo><mrow><mo>(</mo><mfrac><mrow><mi>m</mi></mrow><mrow><mi>k</mi></mrow></mfrac><mo>−</mo><mfrac><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>)</mo></mrow><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span> (Zhai et al., 2021). This conjecture was also included in a survey of Liu and Ning as one of twenty unsolved problems in spectral graph theory. Recently, Y.T. Li posed a stronger conjecture, which states that the above spectral bound holds for <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow><mrow><mo>+</mo></mrow></msubsup></math></span>-free and <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>2</mn></mrow><mrow><mo>+</mo></mrow></msubsup></math></span>-free graphs. In this paper, we confirm these two conjectures by using <span><math><mi>k</mi></math></span>-core method and spectral techniques. This presents a new approach to study Brualdi–Hoffman–Turán problems</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669824000519","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Brualdi–Hoffman–Turán-type problem asks what is the maximum spectral radius λ1(G) of an H-free graph G on m edges? This problem gives a spectral perspective on the existence of a subgraph H. A significant result, due to Nikiforov, states that λ1(G)2m(11r) for every Kr+1-free graph G (Nikiforov, 2002). Bollobás and Nikiforov further conjectured λ12(G)+λ22(G)2m(11r) for every Kr+1-free graph G (Bollobás and Nikiforov, 2007). Let Ck+ denote the graph obtained from a k-cycle by adding a chord between two vertices of distance two. Zhai, Lin and Shu conjectured that for k2 and m sufficiently large, if G is a C2k+1-free or C2k+2-free graph, then λ1(G)k1+4mk2+12, with equality if and only if GKk(mkk12)K1 (Zhai et al., 2021). This conjecture was also included in a survey of Liu and Ning as one of twenty unsolved problems in spectral graph theory. Recently, Y.T. Li posed a stronger conjecture, which states that the above spectral bound holds for C2k+1+-free and C2k+2+-free graphs. In this paper, we confirm these two conjectures by using k-core method and spectral techniques. This presents a new approach to study Brualdi–Hoffman–Turán problems

循环上的布鲁尔迪-霍夫曼-图兰问题
布鲁尔迪-霍夫曼-图兰(Brualdi-Hoffman-Turán-type)问题问的是,m 边上无 H 图 G 的最大谱半径 λ1(G) 是多少?尼基福罗夫(Nikiforov)提出的一个重要结果表明,对于每个无 Kr+1 图 G,λ1(G)≤2m(1-1r)(Nikiforov,2002 年)。Bollobás 和 Nikiforov 进一步猜想,对于每个无 Kr+1 图形 G,λ12(G)+λ22(G)≤2m(1-1r) (Bollobás and Nikiforov, 2007)。让 Ck+ 表示通过在距离为 2 的两个顶点之间添加一条弦而从 k 循环中得到的图。翟、林和舒猜想,对于 k≥2 和 m 足够大的情况,如果 G 是无 C2k+1 或无 C2k+2 的图,那么 λ1(G)≤k-1+4m-k2+12,当且仅当 G≅Kk∇(mk-k-12)K1 时相等(翟等人,2021 年)。这一猜想也被刘和宁列为谱图理论中二十个未解问题之一。最近,李永泰提出了一个更强的猜想,即上述谱界对于无 C2k+1+ 和无 C2k+2+ 的图成立。在本文中,我们利用 k 核方法和光谱技术证实了这两个猜想。这提出了一种研究 Brualdi-Hoffman-Turán 问题的新方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信