{"title":"A lower bound on the multicolor size-Ramsey numbers of paths in hypergraphs","authors":"Deepak Bal , Louis DeBiasio , Allan Lo","doi":"10.1016/j.ejc.2024.103969","DOIUrl":null,"url":null,"abstract":"<div><p>The <span><math><mi>r</mi></math></span>-color size-Ramsey number of a <span><math><mi>k</mi></math></span>-uniform hypergraph <span><math><mi>H</mi></math></span>, denoted by <span><math><mrow><msub><mrow><mover><mrow><mi>R</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>r</mi></mrow></msub><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span>, is the minimum number of edges in a <span><math><mi>k</mi></math></span>-uniform hypergraph <span><math><mi>G</mi></math></span> such that for every <span><math><mi>r</mi></math></span>-coloring of the edges of <span><math><mi>G</mi></math></span> there exists a monochromatic copy of <span><math><mi>H</mi></math></span>. In the case of 2-uniform paths <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, it is known that <span><math><mrow><mi>Ω</mi><mrow><mo>(</mo><msup><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>n</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mover><mrow><mi>R</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>r</mi></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mi>O</mi><mrow><mo>(</mo><mrow><mo>(</mo><msup><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>log</mo><mi>r</mi><mo>)</mo></mrow><mi>n</mi><mo>)</mo></mrow></mrow></math></span> with the best bounds essentially due to Krivelevich (2019). In a recent breakthrough result, Letzter et al. (2021) gave a linear upper bound on the <span><math><mi>r</mi></math></span>-color size-Ramsey number of the <span><math><mi>k</mi></math></span>-uniform tight path <span><math><msubsup><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow><mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mrow></msubsup></math></span>; i.e. <span><math><mrow><msub><mrow><mover><mrow><mi>R</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>r</mi></mrow></msub><mrow><mo>(</mo><msubsup><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow><mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mrow></msubsup><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>O</mi></mrow><mrow><mi>r</mi><mo>,</mo><mi>k</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span>. At about the same time, Winter (2023) gave the first non-trivial lower bounds on the 2-color size-Ramsey number of <span><math><msubsup><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow><mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mrow></msubsup></math></span> for <span><math><mrow><mi>k</mi><mo>≥</mo><mn>3</mn></mrow></math></span>; i.e. <span><math><mrow><msub><mrow><mover><mrow><mi>R</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><msubsup><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow><mrow><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></mrow></msubsup><mo>)</mo></mrow><mo>≥</mo><mfrac><mrow><mn>8</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mi>n</mi><mo>−</mo><mi>O</mi><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msub><mrow><mover><mrow><mi>R</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><msubsup><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow><mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mrow></msubsup><mo>)</mo></mrow><mo>≥</mo><mfenced><mrow><msub><mrow><mo>log</mo></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mrow></mfenced><mi>n</mi><mo>−</mo><msub><mrow><mi>O</mi></mrow><mrow><mi>k</mi></mrow></msub><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> for <span><math><mrow><mi>k</mi><mo>≥</mo><mn>4</mn></mrow></math></span>.</p><p>We consider the problem of giving a lower bound on the <span><math><mi>r</mi></math></span>-color size-Ramsey number of <span><math><msubsup><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow><mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mrow></msubsup></math></span> (for fixed <span><math><mi>k</mi></math></span> and growing <span><math><mi>r</mi></math></span>). Our main result is that <span><math><mrow><msub><mrow><mover><mrow><mi>R</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>r</mi></mrow></msub><mrow><mo>(</mo><msubsup><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow><mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mrow></msubsup><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>Ω</mi></mrow><mrow><mi>k</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>r</mi></mrow><mrow><mi>k</mi></mrow></msup><mi>n</mi><mo>)</mo></mrow></mrow></math></span> which generalizes the best known lower bound for graphs mentioned above. One of the key elements of our proof turns out to be an interesting result of its own. We prove that <span><math><mrow><msub><mrow><mover><mrow><mi>R</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>r</mi></mrow></msub><mrow><mo>(</mo><msubsup><mrow><mi>P</mi></mrow><mrow><mi>k</mi><mo>+</mo><mi>m</mi></mrow><mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mrow></msubsup><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>Θ</mi></mrow><mrow><mi>k</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>r</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> for all <span><math><mrow><mn>1</mn><mo>≤</mo><mi>m</mi><mo>≤</mo><mi>k</mi></mrow></math></span>; that is, we determine the correct order of magnitude of the <span><math><mi>r</mi></math></span>-color size-Ramsey number of every sufficiently short tight path.</p><p>All of our results generalize to <span><math><mi>ℓ</mi></math></span>-overlapping <span><math><mi>k</mi></math></span>-uniform paths <span><math><msubsup><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow><mrow><mrow><mo>(</mo><mi>k</mi><mo>,</mo><mi>ℓ</mi><mo>)</mo></mrow></mrow></msubsup></math></span>. In particular we note that when <span><math><mrow><mn>1</mn><mo>≤</mo><mi>ℓ</mi><mo>≤</mo><mfrac><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></math></span>, we have <span><math><mrow><msub><mrow><mi>Ω</mi></mrow><mrow><mi>k</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>n</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mover><mrow><mi>R</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>r</mi></mrow></msub><mrow><mo>(</mo><msubsup><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow><mrow><mrow><mo>(</mo><mi>k</mi><mo>,</mo><mi>ℓ</mi><mo>)</mo></mrow></mrow></msubsup><mo>)</mo></mrow><mo>=</mo><mi>O</mi><mrow><mo>(</mo><mrow><mo>(</mo><msup><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>log</mo><mi>r</mi><mo>)</mo></mrow><mi>n</mi><mo>)</mo></mrow></mrow></math></span> which essentially matches the best known bounds for graphs mentioned above. Additionally, in the case <span><math><mrow><mi>k</mi><mo>=</mo><mn>3</mn></mrow></math></span>, <span><math><mrow><mi>ℓ</mi><mo>=</mo><mn>2</mn></mrow></math></span>, and <span><math><mrow><mi>r</mi><mo>=</mo><mn>2</mn></mrow></math></span>, we give a more precise estimate which implies <span><math><mrow><msub><mrow><mover><mrow><mi>R</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><msubsup><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow><mrow><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></mrow></msubsup><mo>)</mo></mrow><mo>≥</mo><mfrac><mrow><mn>28</mn></mrow><mrow><mn>9</mn></mrow></mfrac><mi>n</mi><mo>−</mo><mi>O</mi><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>, improving on the above-mentioned lower bound of Winter in the case <span><math><mrow><mi>k</mi><mo>=</mo><mn>3</mn></mrow></math></span>.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0195669824000544/pdfft?md5=8ed971a8a16a37bfa808eabee4a3a84c&pid=1-s2.0-S0195669824000544-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669824000544","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The -color size-Ramsey number of a -uniform hypergraph , denoted by , is the minimum number of edges in a -uniform hypergraph such that for every -coloring of the edges of there exists a monochromatic copy of . In the case of 2-uniform paths , it is known that with the best bounds essentially due to Krivelevich (2019). In a recent breakthrough result, Letzter et al. (2021) gave a linear upper bound on the -color size-Ramsey number of the -uniform tight path ; i.e. . At about the same time, Winter (2023) gave the first non-trivial lower bounds on the 2-color size-Ramsey number of for ; i.e. and for .
We consider the problem of giving a lower bound on the -color size-Ramsey number of (for fixed and growing ). Our main result is that which generalizes the best known lower bound for graphs mentioned above. One of the key elements of our proof turns out to be an interesting result of its own. We prove that for all ; that is, we determine the correct order of magnitude of the -color size-Ramsey number of every sufficiently short tight path.
All of our results generalize to -overlapping -uniform paths . In particular we note that when , we have which essentially matches the best known bounds for graphs mentioned above. Additionally, in the case , , and , we give a more precise estimate which implies , improving on the above-mentioned lower bound of Winter in the case .
期刊介绍:
The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.