Martin C. Korzeczek , Laurynas Dagys , Christoph Müller , Benedikt Tratzmiller , Alon Salhov , Tim Eichhorn , Jochen Scheuer , Stephan Knecht , Martin B. Plenio , Ilai Schwartz
{"title":"Towards a unified picture of polarization transfer — pulsed DNP and chemically equivalent PHIP","authors":"Martin C. Korzeczek , Laurynas Dagys , Christoph Müller , Benedikt Tratzmiller , Alon Salhov , Tim Eichhorn , Jochen Scheuer , Stephan Knecht , Martin B. Plenio , Ilai Schwartz","doi":"10.1016/j.jmr.2024.107671","DOIUrl":null,"url":null,"abstract":"<div><p>Nuclear spin hyperpolarization techniques, such as dynamic nuclear polarization (DNP) and parahydrogen-induced polarization (PHIP), have revolutionized nuclear magnetic resonance and magnetic resonance imaging. In these methods, a readily available source of high spin order, either electron spins in DNP or singlet states in hydrogen for PHIP, is brought into close proximity with nuclear spin targets, enabling efficient transfer of spin order under external quantum control. Despite vast disparities in energy scales and interaction mechanisms between electron spins in DNP and nuclear singlet states in PHIP, a pseudo-spin formalism allows us to establish an intriguing equivalence. As a result, the important low-field polarization transfer regime of PHIP can be mapped onto an analogous system equivalent to pulsed-DNP. This establishes a correspondence between key polarization transfer sequences in PHIP and DNP, facilitating the transfer of sequence development concepts. This promises fresh insights and significant cross-pollination between DNP and PHIP polarization sequence developers.</p></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"362 ","pages":"Article 107671"},"PeriodicalIF":2.0000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1090780724000557/pdfft?md5=a3a0f38ec0c330f9b0f6062aa2e958f1&pid=1-s2.0-S1090780724000557-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of magnetic resonance","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1090780724000557","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Nuclear spin hyperpolarization techniques, such as dynamic nuclear polarization (DNP) and parahydrogen-induced polarization (PHIP), have revolutionized nuclear magnetic resonance and magnetic resonance imaging. In these methods, a readily available source of high spin order, either electron spins in DNP or singlet states in hydrogen for PHIP, is brought into close proximity with nuclear spin targets, enabling efficient transfer of spin order under external quantum control. Despite vast disparities in energy scales and interaction mechanisms between electron spins in DNP and nuclear singlet states in PHIP, a pseudo-spin formalism allows us to establish an intriguing equivalence. As a result, the important low-field polarization transfer regime of PHIP can be mapped onto an analogous system equivalent to pulsed-DNP. This establishes a correspondence between key polarization transfer sequences in PHIP and DNP, facilitating the transfer of sequence development concepts. This promises fresh insights and significant cross-pollination between DNP and PHIP polarization sequence developers.
期刊介绍:
The Journal of Magnetic Resonance presents original technical and scientific papers in all aspects of magnetic resonance, including nuclear magnetic resonance spectroscopy (NMR) of solids and liquids, electron spin/paramagnetic resonance (EPR), in vivo magnetic resonance imaging (MRI) and spectroscopy (MRS), nuclear quadrupole resonance (NQR) and magnetic resonance phenomena at nearly zero fields or in combination with optics. The Journal''s main aims include deepening the physical principles underlying all these spectroscopies, publishing significant theoretical and experimental results leading to spectral and spatial progress in these areas, and opening new MR-based applications in chemistry, biology and medicine. The Journal also seeks descriptions of novel apparatuses, new experimental protocols, and new procedures of data analysis and interpretation - including computational and quantum-mechanical methods - capable of advancing MR spectroscopy and imaging.