Claes Strannegård , Niklas Engsner , Simon Ulfsbäcker , Sebastian Andreasson , John Endler , Ann Nordgren
{"title":"Survival games for humans and machines","authors":"Claes Strannegård , Niklas Engsner , Simon Ulfsbäcker , Sebastian Andreasson , John Endler , Ann Nordgren","doi":"10.1016/j.cogsys.2024.101235","DOIUrl":null,"url":null,"abstract":"<div><p>Survival games can be described as video games where the player searches for energy and treasures, while avoiding obstacles and hostile attacks. Ms.Pac-Man and Minecraft are two well-known examples. Currently there are AI models that outperform human players at Ms.Pac-Man, while AI models playing Minecraft above the human level has been a long-standing challenge. This paper concerns what we call <em>pure</em> survival games, which take place in previously unseen worlds containing only energy, water, and obstacles. The challenge of the player is to navigate and survive in those worlds by continuously finding resources and avoiding obstacles. Arguably, animals need to master physical analogues of pure survival games in order to survive and reproduce. Here we begin to explore human and machine performance on pure survival games. We define two games called the Grid game and the Terrain game and two corresponding AI agents based on deep reinforcement learning: the Grid agent and the Terrain agent. We explore to what extent these agents can match human performance and how their performance is affected by variations in their perception, memory, and reward models. We find that (1) the Terrain agent performs above human level, while the Grid agent performs below human level. (2) the smell, touch, and interoception models contribute significantly to the performance of the Grid agent. (3) the memory model contributes significantly to the performance of the Grid agent; and (4) the performance of the Grid agent is relatively stable under three quite different reward signals, including one that rewards survival and nothing else.</p></div>","PeriodicalId":55242,"journal":{"name":"Cognitive Systems Research","volume":"86 ","pages":"Article 101235"},"PeriodicalIF":2.1000,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1389041724000299/pdfft?md5=79c6c7b26823155231f522fe42b93bdc&pid=1-s2.0-S1389041724000299-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Systems Research","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389041724000299","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Survival games can be described as video games where the player searches for energy and treasures, while avoiding obstacles and hostile attacks. Ms.Pac-Man and Minecraft are two well-known examples. Currently there are AI models that outperform human players at Ms.Pac-Man, while AI models playing Minecraft above the human level has been a long-standing challenge. This paper concerns what we call pure survival games, which take place in previously unseen worlds containing only energy, water, and obstacles. The challenge of the player is to navigate and survive in those worlds by continuously finding resources and avoiding obstacles. Arguably, animals need to master physical analogues of pure survival games in order to survive and reproduce. Here we begin to explore human and machine performance on pure survival games. We define two games called the Grid game and the Terrain game and two corresponding AI agents based on deep reinforcement learning: the Grid agent and the Terrain agent. We explore to what extent these agents can match human performance and how their performance is affected by variations in their perception, memory, and reward models. We find that (1) the Terrain agent performs above human level, while the Grid agent performs below human level. (2) the smell, touch, and interoception models contribute significantly to the performance of the Grid agent. (3) the memory model contributes significantly to the performance of the Grid agent; and (4) the performance of the Grid agent is relatively stable under three quite different reward signals, including one that rewards survival and nothing else.
期刊介绍:
Cognitive Systems Research is dedicated to the study of human-level cognition. As such, it welcomes papers which advance the understanding, design and applications of cognitive and intelligent systems, both natural and artificial.
The journal brings together a broad community studying cognition in its many facets in vivo and in silico, across the developmental spectrum, focusing on individual capacities or on entire architectures. It aims to foster debate and integrate ideas, concepts, constructs, theories, models and techniques from across different disciplines and different perspectives on human-level cognition. The scope of interest includes the study of cognitive capacities and architectures - both brain-inspired and non-brain-inspired - and the application of cognitive systems to real-world problems as far as it offers insights relevant for the understanding of cognition.
Cognitive Systems Research therefore welcomes mature and cutting-edge research approaching cognition from a systems-oriented perspective, both theoretical and empirically-informed, in the form of original manuscripts, short communications, opinion articles, systematic reviews, and topical survey articles from the fields of Cognitive Science (including Philosophy of Cognitive Science), Artificial Intelligence/Computer Science, Cognitive Robotics, Developmental Science, Psychology, and Neuroscience and Neuromorphic Engineering. Empirical studies will be considered if they are supplemented by theoretical analyses and contributions to theory development and/or computational modelling studies.