Aubrey Makofane , David E Motaung , Nomso C Hintsho-Mbita
{"title":"Green synthesis of silver deposited on copper ferrite nanoparticles for the photodegradation of dye and antibiotics","authors":"Aubrey Makofane , David E Motaung , Nomso C Hintsho-Mbita","doi":"10.1016/j.apsadv.2024.100601","DOIUrl":null,"url":null,"abstract":"<div><p>Wastewater remediation is a prominent concern that should be addressed, as it is a critical problem that damages natural resources and has a negative impact on living organisms. In this study, the synthesis of copper ferrite and silver doped-copper ferrite nanoparticles named CuFe<sub>2</sub>O<sub>4</sub> and Ag<sub>X</sub>CuFe<sub>2</sub>O<sub>4</sub> using <em>Monsonia burkeana</em> (<em>M. burkeana</em>) as a fuel and their photocatalytic performance against the textile pollutant, Methylene blue (MB) and the pharmaceutical pollutant, sulfisoxazole (SSX) was reported. The physical, optical, spectroscopic, and surface analyses of the as-prepared nanoparticles were characterized using various techniques. XRD confirmed the crystalline structure of Ag-CuFe<sub>2</sub>O<sub>4</sub> and the incorporation of silver on the surface of the nanoferrites. FTIR analysis indicated the formation of a single-phase spinel crystalline structure with two sub-lattices (T<sub>d</sub> and O<sub>h</sub>). UV–Vis absorption spectra of silver-substituted copper ferrite revealed that the band gap energy (E<sub>g</sub>) decreased with increasing crystallite size. Upon testing their degradation efficiency, at pH 12, the highest degradation of 99 % after 60 min for the 7 % AgCuFe<sub>2</sub>O<sub>4</sub> was reported, and the rate of the reaction was found to be 0.09769 min<sup>−1</sup>. The 7 % Ag-CuFe<sub>2</sub>O<sub>4</sub> catalyst could be reused more than 4 times with a minimal loss in photostability and the <em>e</em><sup>−</sup> and •O<sup>2-</sup> were the primary species responsible for MB degradation. The photocatalyst 7 %Ag-CuFe<sub>2</sub>O<sub>4,</sub> showed a 60 % decomposition for the antibiotic after 120 min of UV-radiation. The 7 % Ag-CuFe<sub>2</sub>O<sub>4</sub> photocatalyst displayed superior magnetic recovery capability under the action of the external magnetic field. These developments in this study offer wide promising applications in water environmental remediation.</p></div>","PeriodicalId":34303,"journal":{"name":"Applied Surface Science Advances","volume":"21 ","pages":"Article 100601"},"PeriodicalIF":7.5000,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666523924000291/pdfft?md5=1c2bf807510301850e84facf318f7826&pid=1-s2.0-S2666523924000291-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666523924000291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Wastewater remediation is a prominent concern that should be addressed, as it is a critical problem that damages natural resources and has a negative impact on living organisms. In this study, the synthesis of copper ferrite and silver doped-copper ferrite nanoparticles named CuFe2O4 and AgXCuFe2O4 using Monsonia burkeana (M. burkeana) as a fuel and their photocatalytic performance against the textile pollutant, Methylene blue (MB) and the pharmaceutical pollutant, sulfisoxazole (SSX) was reported. The physical, optical, spectroscopic, and surface analyses of the as-prepared nanoparticles were characterized using various techniques. XRD confirmed the crystalline structure of Ag-CuFe2O4 and the incorporation of silver on the surface of the nanoferrites. FTIR analysis indicated the formation of a single-phase spinel crystalline structure with two sub-lattices (Td and Oh). UV–Vis absorption spectra of silver-substituted copper ferrite revealed that the band gap energy (Eg) decreased with increasing crystallite size. Upon testing their degradation efficiency, at pH 12, the highest degradation of 99 % after 60 min for the 7 % AgCuFe2O4 was reported, and the rate of the reaction was found to be 0.09769 min−1. The 7 % Ag-CuFe2O4 catalyst could be reused more than 4 times with a minimal loss in photostability and the e− and •O2- were the primary species responsible for MB degradation. The photocatalyst 7 %Ag-CuFe2O4, showed a 60 % decomposition for the antibiotic after 120 min of UV-radiation. The 7 % Ag-CuFe2O4 photocatalyst displayed superior magnetic recovery capability under the action of the external magnetic field. These developments in this study offer wide promising applications in water environmental remediation.