QuadWave1D: An optimized quadratic formulation for spectral prediction of coastal waves

IF 4.2 2区 工程技术 Q1 ENGINEERING, CIVIL
Gal Akrish , Ad Reniers , Marcel Zijlema , Pieter Smit
{"title":"QuadWave1D: An optimized quadratic formulation for spectral prediction of coastal waves","authors":"Gal Akrish ,&nbsp;Ad Reniers ,&nbsp;Marcel Zijlema ,&nbsp;Pieter Smit","doi":"10.1016/j.coastaleng.2024.104516","DOIUrl":null,"url":null,"abstract":"<div><p>Spectral information of coastal waves and the associated statistical parameters (e.g., the significant wave height and mean wave period) over large spatial scales is essential for many applications (e.g., coastal safety assessments, coastal management and developments, etc.). This demand explains the necessity for accurate yet effective models. A well-known efficient modelling approach is the quadratic approach (often referred to as frequency-domain models, weakly nonlinear mild-slope models, amplitude models, etc.). The efficiency of this approach is achieved through modelling reduction of the original governing equations (e.g., Euler equations). Most significantly, wave nonlinearity is described solely by a single quadratic mode-coupling term. Therefore, doubts arise with regard to the predictive capabilities of the quadratic approach to reliably describe the nonlinear development of waves in the coastal environment where nonlinearity is typically significant. This study attempts to push the limit of the prediction capabilities of nonlinear coastal waves based on the quadratic approach. To this end, an optimization process is proposed, striving to extract the quadratic formulation which describes most adequately nonlinear wave developments over water depths and bathymetrical structures which characterize the coastal environment. The outcome is the model QuadWave1D: a fully dispersive quadratic model for coastal wave prediction in one-dimension. Based on a wide set of examples (including monochromatic, bichromatic and irregular wave conditions) and comparing to other representative quadratic formulations, it is found that QuadWave1D presents superior predictive capabilities of both the sea-swell components and the infragravity field.</p></div>","PeriodicalId":50996,"journal":{"name":"Coastal Engineering","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coastal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378383924000644","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Spectral information of coastal waves and the associated statistical parameters (e.g., the significant wave height and mean wave period) over large spatial scales is essential for many applications (e.g., coastal safety assessments, coastal management and developments, etc.). This demand explains the necessity for accurate yet effective models. A well-known efficient modelling approach is the quadratic approach (often referred to as frequency-domain models, weakly nonlinear mild-slope models, amplitude models, etc.). The efficiency of this approach is achieved through modelling reduction of the original governing equations (e.g., Euler equations). Most significantly, wave nonlinearity is described solely by a single quadratic mode-coupling term. Therefore, doubts arise with regard to the predictive capabilities of the quadratic approach to reliably describe the nonlinear development of waves in the coastal environment where nonlinearity is typically significant. This study attempts to push the limit of the prediction capabilities of nonlinear coastal waves based on the quadratic approach. To this end, an optimization process is proposed, striving to extract the quadratic formulation which describes most adequately nonlinear wave developments over water depths and bathymetrical structures which characterize the coastal environment. The outcome is the model QuadWave1D: a fully dispersive quadratic model for coastal wave prediction in one-dimension. Based on a wide set of examples (including monochromatic, bichromatic and irregular wave conditions) and comparing to other representative quadratic formulations, it is found that QuadWave1D presents superior predictive capabilities of both the sea-swell components and the infragravity field.

QuadWave1D:用于沿岸波浪频谱预测的优化二次方公式
大空间尺度上沿岸波浪的频谱信息和相关的统计参数(如显波高和平均波浪周期)对 许多应用(如沿岸安全评估、沿岸管理和开发等)都是至关重要的。这种需求说明了精确而有效的模式的必要性。众所周知,高效的建模方法是二次方法(通常称为频域模型、弱非线性缓坡模型、振 幅模型等)。这种方法的效率是通过对原始控制方程(如欧拉方程)进行建模简化实现的。最重要的是,波的非线性完全由单一的二次模态耦合项来描述。因此,在非线性通常很显著的沿岸环境中,人们对二次方法能否可靠地描述波浪的非线性发 展产生了怀疑。本研究试图突破基于二次方法的非线性沿岸波浪预测能力的极限。为此,提出了一个优化过程,力求提取出能最充分地描述沿岸环境水深和水深结构非线性波浪发展的二次方公式。这就是 QuadWave1D 模型:一个用于一维沿岸波浪预报的全分散二次方模型。根据大量的实例(包括单色、双色和不规则波浪条件),并与其他有代表性的二次方 式进行比较,发现 QuadWave1D 对海浪分量和次重力场都有很好的预测能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Coastal Engineering
Coastal Engineering 工程技术-工程:大洋
CiteScore
9.20
自引率
13.60%
发文量
0
审稿时长
3.5 months
期刊介绍: Coastal Engineering is an international medium for coastal engineers and scientists. Combining practical applications with modern technological and scientific approaches, such as mathematical and numerical modelling, laboratory and field observations and experiments, it publishes fundamental studies as well as case studies on the following aspects of coastal, harbour and offshore engineering: waves, currents and sediment transport; coastal, estuarine and offshore morphology; technical and functional design of coastal and harbour structures; morphological and environmental impact of coastal, harbour and offshore structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信