{"title":"Asymptotic behavior of the 3D incompressible Navier–Stokes equations with damping","authors":"Fuxian Peng , Xueting Jin , Huan Yu","doi":"10.1016/j.na.2024.113543","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider the 3D incompressible Navier–Stokes equations with damping term <span><math><mrow><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>β</mi><mo>−</mo><mn>1</mn></mrow></msup><mi>u</mi><mrow><mo>(</mo><mi>β</mi><mo>≥</mo><mn>1</mn><mo>)</mo></mrow><mo>.</mo></mrow></math></span> First, by using a different and simple method from Cai and Lei (2010), Jia et al. (2011), Jiang (2012) and Yu and Zheng (2019), for any <span><math><mrow><mi>β</mi><mo>≥</mo><mn>1</mn><mo>,</mo></mrow></math></span> we prove that the weak solutions decay to zero in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> as time tends to infinity; for any <span><math><mrow><mi>β</mi><mo>≥</mo><mn>3</mn><mo>,</mo></mrow></math></span> we derive optimal decay rates of the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-norm of the solutions. Second, we obtain the decay rate with some appropriate space weighted estimates, which is the first result on the 3D damped Navier–Stokes equations to our knowledge.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X24000622","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we consider the 3D incompressible Navier–Stokes equations with damping term First, by using a different and simple method from Cai and Lei (2010), Jia et al. (2011), Jiang (2012) and Yu and Zheng (2019), for any we prove that the weak solutions decay to zero in as time tends to infinity; for any we derive optimal decay rates of the -norm of the solutions. Second, we obtain the decay rate with some appropriate space weighted estimates, which is the first result on the 3D damped Navier–Stokes equations to our knowledge.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.