{"title":"Evidence for grid-cell-like activity in the time domain","authors":"Gregory Peters-Founshtein MD, PhD , Amnon Dafni-Merom MSc , Rotem Monsa MSc , Shahar Arzy MD, PhD","doi":"10.1016/j.neuropsychologia.2024.108878","DOIUrl":null,"url":null,"abstract":"<div><p>The relation between the processing of space and time in the brain has been an enduring cross-disciplinary question. Grid cells have been recognized as a hallmark of the mammalian navigation system, with recent studies attesting to their involvement in the organization of conceptual knowledge in humans. To determine whether grid-cell-like representations support temporal processing, we asked subjects to mentally simulate changes in age and time-of-day, each constituting “trajectory” in an age-day space, while undergoing fMRI. We found that grid-cell-like representations supported trajecting across this age-day space. Furthermore, brain regions concurrently coding past-to-future orientation positively modulated the magnitude of grid-cell-like representation in the left entorhinal cortex. Finally, our findings suggest that temporal processing may be supported by spatially modulated systems, and that innate regularities of abstract domains may interface and alter grid-cell-like representations, similarly to spatial geometry.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0028393224000939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
The relation between the processing of space and time in the brain has been an enduring cross-disciplinary question. Grid cells have been recognized as a hallmark of the mammalian navigation system, with recent studies attesting to their involvement in the organization of conceptual knowledge in humans. To determine whether grid-cell-like representations support temporal processing, we asked subjects to mentally simulate changes in age and time-of-day, each constituting “trajectory” in an age-day space, while undergoing fMRI. We found that grid-cell-like representations supported trajecting across this age-day space. Furthermore, brain regions concurrently coding past-to-future orientation positively modulated the magnitude of grid-cell-like representation in the left entorhinal cortex. Finally, our findings suggest that temporal processing may be supported by spatially modulated systems, and that innate regularities of abstract domains may interface and alter grid-cell-like representations, similarly to spatial geometry.