Kirigami-inspired, three-dimensional piezoelectric pressure sensors assembled by compressive buckling

IF 12.3 1区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Yi Zhang, Changbo Liu, Ben Jia, Dongqin Ma, Xuecheng Tian, Yuanyuan Cui, Yuan Deng
{"title":"Kirigami-inspired, three-dimensional piezoelectric pressure sensors assembled by compressive buckling","authors":"Yi Zhang, Changbo Liu, Ben Jia, Dongqin Ma, Xuecheng Tian, Yuanyuan Cui, Yuan Deng","doi":"10.1038/s41528-024-00310-6","DOIUrl":null,"url":null,"abstract":"Piezoelectric sensors whose sensing performances can be flexibly regulated hold significant promise for efficient signal-acquisition applications in the healthcare field. The existing methods for regulating the properties of polyvinylidene fluoride (PVDF) films mainly include material modification and structural design. Compared to material modification, which has a long test period and an unstable preparation process, structural design is a more efficient method. The irigami structure combined with compressive buckling can endow the flexible film with rich macrostructural features. Here, a method is fabricated to modulate the sensing performance by employing distinct 3D structures and encapsulation materials with varying Young’s moduli. The relationship among the aspect ratio (α), pattern factor (η), elastic modulus of encapsulation materials, and equivalent stiffness is obtained by finite element simulation, which provides theoretical guidance for the design of the 2D precursor and the selection of encapsulation materials. In the demonstration applications, the sensor accurately captures pulse waveforms in multiple parts of the human body and is employed for the pressure monitoring of different parts of the sole under various posture states. This method of structure design is efficient, and the preparation process is convenient, providing a strategy for the performance control of piezoelectric pressure sensors.","PeriodicalId":48528,"journal":{"name":"npj Flexible Electronics","volume":" ","pages":"1-11"},"PeriodicalIF":12.3000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41528-024-00310-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Flexible Electronics","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41528-024-00310-6","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Piezoelectric sensors whose sensing performances can be flexibly regulated hold significant promise for efficient signal-acquisition applications in the healthcare field. The existing methods for regulating the properties of polyvinylidene fluoride (PVDF) films mainly include material modification and structural design. Compared to material modification, which has a long test period and an unstable preparation process, structural design is a more efficient method. The irigami structure combined with compressive buckling can endow the flexible film with rich macrostructural features. Here, a method is fabricated to modulate the sensing performance by employing distinct 3D structures and encapsulation materials with varying Young’s moduli. The relationship among the aspect ratio (α), pattern factor (η), elastic modulus of encapsulation materials, and equivalent stiffness is obtained by finite element simulation, which provides theoretical guidance for the design of the 2D precursor and the selection of encapsulation materials. In the demonstration applications, the sensor accurately captures pulse waveforms in multiple parts of the human body and is employed for the pressure monitoring of different parts of the sole under various posture states. This method of structure design is efficient, and the preparation process is convenient, providing a strategy for the performance control of piezoelectric pressure sensors.

Abstract Image

受桐木启发、通过压缩屈曲组装的三维压电压力传感器
传感性能可灵活调节的压电传感器在医疗保健领域的高效信号采集应用中大有可为。调节聚偏二氟乙烯(PVDF)薄膜性能的现有方法主要包括材料改性和结构设计。与测试周期长、制备过程不稳定的材料改性相比,结构设计是一种更为有效的方法。虹膜结构与压缩屈曲相结合,可以赋予柔性薄膜丰富的宏观结构特征。在此,我们采用不同的三维结构和不同杨氏模量的封装材料,制作了一种调节传感性能的方法。通过有限元模拟获得了长宽比 (α)、图案系数 (η)、封装材料弹性模量和等效刚度之间的关系,为二维前驱体的设计和封装材料的选择提供了理论指导。在示范应用中,该传感器能准确捕捉人体多个部位的脉搏波形,用于监测各种姿势状态下脚底不同部位的压力。这种结构设计方法效率高,制备过程方便,为压电压力传感器的性能控制提供了一种策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
17.10
自引率
4.80%
发文量
91
审稿时长
6 weeks
期刊介绍: npj Flexible Electronics is an online-only and open access journal, which publishes high-quality papers related to flexible electronic systems, including plastic electronics and emerging materials, new device design and fabrication technologies, and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信