Graph embedded low-light image enhancement transformer based on federated learning for Internet of Vehicle under tunnel environment

IF 1.8 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yuan Shu, Fuxi Zhu, Zhongqiu Zhang, Min Zhang, Jie Yang, Yi Wang, Jun Wang
{"title":"Graph embedded low-light image enhancement transformer based on federated learning for Internet of Vehicle under tunnel environment","authors":"Yuan Shu,&nbsp;Fuxi Zhu,&nbsp;Zhongqiu Zhang,&nbsp;Min Zhang,&nbsp;Jie Yang,&nbsp;Yi Wang,&nbsp;Jun Wang","doi":"10.1111/coin.12648","DOIUrl":null,"url":null,"abstract":"<p>The Internet of Vehicles (IoV) autonomous driving technology based on deep learning has achieved great success. However, under the tunnel environment, the computer vision-based IoV may fail due to low illumination. In order to handle this issue, this paper deploys an image enhancement module at the terminal of the IoV to alleviate the low illumination influence. The enhanced images can be submitted through IoT to the cloud server for further processing. The core algorithm of image enhancement is implemented by a dynamic graph embedded transformer network based on federated learning which can fully utilize the data resources of multiple devices in IoV and improve the generalization. Extensive comparative experiments are conducted on the publicly available dataset and the self-built dataset which is collected under the tunnel environment. Compared with other deep models, all results confirm that the proposed graph embedded Transformer model can effectively enhance the detail information of the low-light image, which can greatly improve the following tasks in IoV.</p>","PeriodicalId":55228,"journal":{"name":"Computational Intelligence","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/coin.12648","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The Internet of Vehicles (IoV) autonomous driving technology based on deep learning has achieved great success. However, under the tunnel environment, the computer vision-based IoV may fail due to low illumination. In order to handle this issue, this paper deploys an image enhancement module at the terminal of the IoV to alleviate the low illumination influence. The enhanced images can be submitted through IoT to the cloud server for further processing. The core algorithm of image enhancement is implemented by a dynamic graph embedded transformer network based on federated learning which can fully utilize the data resources of multiple devices in IoV and improve the generalization. Extensive comparative experiments are conducted on the publicly available dataset and the self-built dataset which is collected under the tunnel environment. Compared with other deep models, all results confirm that the proposed graph embedded Transformer model can effectively enhance the detail information of the low-light image, which can greatly improve the following tasks in IoV.

基于联合学习的图嵌入式低照度图像增强变换器,用于隧道环境下的车联网
基于深度学习的车联网(IoV)自动驾驶技术已经取得了巨大成功。然而,在隧道环境下,基于计算机视觉的 IoV 可能会因光照不足而失效。为了解决这一问题,本文在 IoV 的终端部署了图像增强模块,以减轻低照度的影响。增强后的图像可通过物联网提交到云服务器进行进一步处理。图像增强的核心算法由基于联合学习的动态图嵌入式变换器网络实现,可以充分利用物联网中多个设备的数据资源,提高泛化能力。在公开数据集和隧道环境下采集的自建数据集上进行了广泛的对比实验。与其他深度模型相比,所有结果都证实了所提出的图嵌入 Transformer 模型能有效增强弱光图像的细节信息,从而大大改善物联网中的以下任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational Intelligence
Computational Intelligence 工程技术-计算机:人工智能
CiteScore
6.90
自引率
3.60%
发文量
65
审稿时长
>12 weeks
期刊介绍: This leading international journal promotes and stimulates research in the field of artificial intelligence (AI). Covering a wide range of issues - from the tools and languages of AI to its philosophical implications - Computational Intelligence provides a vigorous forum for the publication of both experimental and theoretical research, as well as surveys and impact studies. The journal is designed to meet the needs of a wide range of AI workers in academic and industrial research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信