Classical groups as flag-transitive automorphism groups of 2-designs with λ = 2

IF 0.9 2区 数学 Q2 MATHEMATICS
Seyed Hassan Alavi , Mohsen Bayat , Ashraf Daneshkhah , Marjan Tadbirinia
{"title":"Classical groups as flag-transitive automorphism groups of 2-designs with λ = 2","authors":"Seyed Hassan Alavi ,&nbsp;Mohsen Bayat ,&nbsp;Ashraf Daneshkhah ,&nbsp;Marjan Tadbirinia","doi":"10.1016/j.jcta.2024.105892","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, we study 2-designs with <span><math><mi>λ</mi><mo>=</mo><mn>2</mn></math></span> admitting a flag-transitive and point-primitive almost simple automorphism group <em>G</em> with socle <em>X</em> a finite simple classical group of Lie type. We prove that such a design belongs to an infinite family of 2-designs with parameter set <span><math><mo>(</mo><mo>(</mo><msup><mrow><mn>3</mn></mrow><mrow><mi>n</mi></mrow></msup><mo>−</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span> and <span><math><mi>X</mi><mo>=</mo><msub><mrow><mi>PSL</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mn>3</mn><mo>)</mo></math></span> for some <span><math><mi>n</mi><mo>⩾</mo><mn>3</mn></math></span>, or <span><math><mi>X</mi><mo>=</mo><msub><mrow><mi>PSL</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo></math></span> with point-stabiliser <span><math><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn><mo>(</mo><mi>q</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>/</mo><mi>gcd</mi><mo>⁡</mo><mo>(</mo><mn>2</mn><mo>,</mo><mi>q</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></msub></math></span>, or it is isomorphic to the 2-design with parameter set <span><math><mo>(</mo><mn>6</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span>, <span><math><mo>(</mo><mn>7</mn><mo>,</mo><mn>4</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span>, <span><math><mo>(</mo><mn>10</mn><mo>,</mo><mn>4</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span>, <span><math><mo>(</mo><mn>11</mn><mo>,</mo><mn>5</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span>, <span><math><mo>(</mo><mn>28</mn><mo>,</mo><mn>7</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span>, <span><math><mo>(</mo><mn>28</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span>, <span><math><mo>(</mo><mn>36</mn><mo>,</mo><mn>6</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span> or <span><math><mo>(</mo><mn>126</mn><mo>,</mo><mn>6</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span>.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"206 ","pages":"Article 105892"},"PeriodicalIF":0.9000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316524000311","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we study 2-designs with λ=2 admitting a flag-transitive and point-primitive almost simple automorphism group G with socle X a finite simple classical group of Lie type. We prove that such a design belongs to an infinite family of 2-designs with parameter set ((3n1)/2,3,2) and X=PSLn(3) for some n3, or X=PSL2(q) with point-stabiliser D2(q+1)/gcd(2,q1), or it is isomorphic to the 2-design with parameter set (6,3,2), (7,4,2), (10,4,2), (11,5,2), (28,7,2), (28,3,2), (36,6,2) or (126,6,2).

经典群作为 λ = 2 的 2 设计的旗跨自变群
在本文中,我们研究了 λ=2 的 2 设计,它容许一个旗递和点直立的几乎简单的自动形群 G,其共面 X 是一个有限简单的李型经典群。我们证明,这样的设计属于参数集为((3n-1)/2,3,2)且 X=PSLn(3) 对于某个 n⩾3,或 X=PSL2(q) 具有点稳定器 D2(q+1)/gcd(2、q-1),或与参数集为(6,3,2)、(7,4,2)、(10,4,2)、(11,5,2)、(28,7,2)、(28,3,2)、(36,6,2)或(126,6,2)的 2 设计同构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
9.10%
发文量
94
审稿时长
12 months
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信