Thuany G. Maraschin , Raiane V. Gonçalves , Marina C. de Vargas , Roberto Correa , Nara R.S. Basso , Griselda B. Galland , Eduardo Cassel
{"title":"Few-layer graphene production through graphite exfoliation in pressurized CO2 assisted by natural surfactant","authors":"Thuany G. Maraschin , Raiane V. Gonçalves , Marina C. de Vargas , Roberto Correa , Nara R.S. Basso , Griselda B. Galland , Eduardo Cassel","doi":"10.1016/j.flatc.2024.100656","DOIUrl":null,"url":null,"abstract":"<div><p>Graphene research has captivated researchers worldwide, propelling innovation across diverse industries. Through the liquid-phase exfoliation methodology of graphite powder, we have demonstrated a rapid route for obtaining few-layer and multi-layer graphene using a natural surfactant, cardanol. Aqueous phase exfoliation of graphite in the presence of cardanol as a surfactant was conducted to obtain pre-exfoliated graphite suspensions. The influence of different ultrasonication times, 10, 20, and 30 min, and contact times with the surfactant, 1 and 60 min, on the stability and concentration of dispersed exfoliated graphite was evaluated. Results indicate that ultrasonication for 20 min resulted in improved stability and reduced graphene flake sizes, making it suitable for scalable graphene production. Subsequently, the most stable dispersions of exfoliated graphite were subjected to CO<sub>2</sub>-pressurized treatment. Promising results were obtained when employing cardanol at its critical micelle concentration. The graphene exhibited good structural quality, low defect density, and small stacking, with an average size of 15 nm, where 40 % of the stacked graphene was smaller than 5 nm. The findings provide valuable recommendations for the scalable production of graphene with multilayers and a few layers (FLG/MLG), using cardanol, a friendly surfactant, and a novel method of exfoliation utilizing supercritical CO<sub>2</sub>. This technology represents an innovative approach, with potential applications in supercapacitors, solar cells, biosensors, polymer composites, and advanced materials.</p></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"45 ","pages":"Article 100656"},"PeriodicalIF":5.9000,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FlatChem","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452262724000503","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Graphene research has captivated researchers worldwide, propelling innovation across diverse industries. Through the liquid-phase exfoliation methodology of graphite powder, we have demonstrated a rapid route for obtaining few-layer and multi-layer graphene using a natural surfactant, cardanol. Aqueous phase exfoliation of graphite in the presence of cardanol as a surfactant was conducted to obtain pre-exfoliated graphite suspensions. The influence of different ultrasonication times, 10, 20, and 30 min, and contact times with the surfactant, 1 and 60 min, on the stability and concentration of dispersed exfoliated graphite was evaluated. Results indicate that ultrasonication for 20 min resulted in improved stability and reduced graphene flake sizes, making it suitable for scalable graphene production. Subsequently, the most stable dispersions of exfoliated graphite were subjected to CO2-pressurized treatment. Promising results were obtained when employing cardanol at its critical micelle concentration. The graphene exhibited good structural quality, low defect density, and small stacking, with an average size of 15 nm, where 40 % of the stacked graphene was smaller than 5 nm. The findings provide valuable recommendations for the scalable production of graphene with multilayers and a few layers (FLG/MLG), using cardanol, a friendly surfactant, and a novel method of exfoliation utilizing supercritical CO2. This technology represents an innovative approach, with potential applications in supercapacitors, solar cells, biosensors, polymer composites, and advanced materials.
期刊介绍:
FlatChem - Chemistry of Flat Materials, a new voice in the community, publishes original and significant, cutting-edge research related to the chemistry of graphene and related 2D & layered materials. The overall aim of the journal is to combine the chemistry and applications of these materials, where the submission of communications, full papers, and concepts should contain chemistry in a materials context, which can be both experimental and/or theoretical. In addition to original research articles, FlatChem also offers reviews, minireviews, highlights and perspectives on the future of this research area with the scientific leaders in fields related to Flat Materials. Topics of interest include, but are not limited to, the following: -Design, synthesis, applications and investigation of graphene, graphene related materials and other 2D & layered materials (for example Silicene, Germanene, Phosphorene, MXenes, Boron nitride, Transition metal dichalcogenides) -Characterization of these materials using all forms of spectroscopy and microscopy techniques -Chemical modification or functionalization and dispersion of these materials, as well as interactions with other materials -Exploring the surface chemistry of these materials for applications in: Sensors or detectors in electrochemical/Lab on a Chip devices, Composite materials, Membranes, Environment technology, Catalysis for energy storage and conversion (for example fuel cells, supercapacitors, batteries, hydrogen storage), Biomedical technology (drug delivery, biosensing, bioimaging)