Tunable magnetic confinement effect in a magnetic superlattice of graphene

IF 9.1 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Onur Tosun, Preetha Sarkar, Chang Qian, Matthew Gilbert, Qian Chen, Nadya Mason
{"title":"Tunable magnetic confinement effect in a magnetic superlattice of graphene","authors":"Onur Tosun, Preetha Sarkar, Chang Qian, Matthew Gilbert, Qian Chen, Nadya Mason","doi":"10.1038/s41699-024-00468-7","DOIUrl":null,"url":null,"abstract":"Two-dimensional van der Waals materials such as graphene present an opportunity for band structure engineering using custom superlattice potentials. In this study, we demonstrate how self-assemblies of magnetic iron-oxide (Fe3O4) nanospheres stacked on monolayer graphene generate a proximity-induced magnetic superlattice in graphene and modify its band structure. Interactions between the nanospheres and the graphene layer generate superlattice Dirac points in addition to a gapped energy spectrum near the K and K′ valleys, resulting in magnetic confinement of quasiparticles around the nanospheres. This is evidenced by gate-dependent resistance oscillations, observed in our low temperature transport measurements, and confirmed by self-consistent tight binding calculations. Furthermore, we show that an external magnetic field can tune the magnetic superlattice potential created by the nanospheres, and thus the transport characteristics of the system. This technique for magnetic-field-tuned band structure engineering using magnetic nanostructures can be extended to a broader class of 2D van der Waals and topological materials.","PeriodicalId":19227,"journal":{"name":"npj 2D Materials and Applications","volume":" ","pages":"1-9"},"PeriodicalIF":9.1000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41699-024-00468-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj 2D Materials and Applications","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41699-024-00468-7","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Two-dimensional van der Waals materials such as graphene present an opportunity for band structure engineering using custom superlattice potentials. In this study, we demonstrate how self-assemblies of magnetic iron-oxide (Fe3O4) nanospheres stacked on monolayer graphene generate a proximity-induced magnetic superlattice in graphene and modify its band structure. Interactions between the nanospheres and the graphene layer generate superlattice Dirac points in addition to a gapped energy spectrum near the K and K′ valleys, resulting in magnetic confinement of quasiparticles around the nanospheres. This is evidenced by gate-dependent resistance oscillations, observed in our low temperature transport measurements, and confirmed by self-consistent tight binding calculations. Furthermore, we show that an external magnetic field can tune the magnetic superlattice potential created by the nanospheres, and thus the transport characteristics of the system. This technique for magnetic-field-tuned band structure engineering using magnetic nanostructures can be extended to a broader class of 2D van der Waals and topological materials.

Abstract Image

石墨烯磁性超晶格中的可调磁约束效应
石墨烯等二维范德华材料为利用定制超晶格电势进行带状结构工程提供了机会。在这项研究中,我们展示了堆叠在单层石墨烯上的磁性氧化铁(Fe3O4)纳米球的自组装如何在石墨烯中产生近距离诱导的磁性超晶格并改变其带状结构。纳米球与石墨烯层之间的相互作用除了在 K 谷和 K′谷附近产生间隙能谱外,还产生了超晶格狄拉克点,导致纳米球周围的准粒子发生磁约束。我们在低温传输测量中观察到的与栅极有关的电阻振荡证明了这一点,自洽紧密结合计算也证实了这一点。此外,我们还展示了外部磁场可以调整纳米球产生的磁超格势,从而调整系统的传输特性。这种利用磁性纳米结构进行磁场调谐带状结构工程的技术可以扩展到更广泛的二维范德华和拓扑材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj 2D Materials and Applications
npj 2D Materials and Applications Engineering-Mechanics of Materials
CiteScore
14.50
自引率
2.10%
发文量
80
审稿时长
15 weeks
期刊介绍: npj 2D Materials and Applications publishes papers on the fundamental behavior, synthesis, properties and applications of existing and emerging 2D materials. By selecting papers with the potential for impact, the journal aims to facilitate the transfer of the research of 2D materials into wide-ranging applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信