{"title":"A review of the application of deep learning in obesity: From early prediction aid to advanced management assistance","authors":"Xinghao Yi , Yangzhige He , Shan Gao , Ming Li","doi":"10.1016/j.dsx.2024.103000","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and aims</h3><p>Obesity is a chronic disease which can cause severe metabolic disorders. Machine learning (ML) techniques, especially deep learning (DL), have proven to be useful in obesity research. However, there is a dearth of systematic reviews of DL applications in obesity. This article aims to summarize the current trend of DL usage in obesity research.</p></div><div><h3>Methods</h3><p>An extensive literature review was carried out across multiple databases, including PubMed, Embase, Web of Science, Scopus, and Medline, to collate relevant studies published from January 2018 to September 2023. The focus was on research detailing the application of DL in the context of obesity. We have distilled critical insights pertaining to the utilized learning models, encompassing aspects of their development, principal results, and foundational methodologies.</p></div><div><h3>Results</h3><p>Our analysis culminated in the synthesis of new knowledge regarding the application of DL in the context of obesity. Finally, 40 research articles were included. The final collection of these research can be divided into three categories: obesity prediction (n = 16); obesity management (n = 13); and body fat estimation (n = 11).</p></div><div><h3>Conclusions</h3><p>This is the first review to examine DL applications in obesity. It reveals DL's superiority in obesity prediction over traditional ML methods, showing promise for multi-omics research. DL also innovates in obesity management through diet, fitness, and environmental analyses. Additionally, DL improves body fat estimation, offering affordable and precise monitoring tools. The study is registered with PROSPERO (ID: CRD42023475159).</p></div>","PeriodicalId":48252,"journal":{"name":"Diabetes & Metabolic Syndrome-Clinical Research & Reviews","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetes & Metabolic Syndrome-Clinical Research & Reviews","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1871402124000614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Background and aims
Obesity is a chronic disease which can cause severe metabolic disorders. Machine learning (ML) techniques, especially deep learning (DL), have proven to be useful in obesity research. However, there is a dearth of systematic reviews of DL applications in obesity. This article aims to summarize the current trend of DL usage in obesity research.
Methods
An extensive literature review was carried out across multiple databases, including PubMed, Embase, Web of Science, Scopus, and Medline, to collate relevant studies published from January 2018 to September 2023. The focus was on research detailing the application of DL in the context of obesity. We have distilled critical insights pertaining to the utilized learning models, encompassing aspects of their development, principal results, and foundational methodologies.
Results
Our analysis culminated in the synthesis of new knowledge regarding the application of DL in the context of obesity. Finally, 40 research articles were included. The final collection of these research can be divided into three categories: obesity prediction (n = 16); obesity management (n = 13); and body fat estimation (n = 11).
Conclusions
This is the first review to examine DL applications in obesity. It reveals DL's superiority in obesity prediction over traditional ML methods, showing promise for multi-omics research. DL also innovates in obesity management through diet, fitness, and environmental analyses. Additionally, DL improves body fat estimation, offering affordable and precise monitoring tools. The study is registered with PROSPERO (ID: CRD42023475159).
期刊介绍:
Diabetes and Metabolic Syndrome: Clinical Research and Reviews is the official journal of DiabetesIndia. It aims to provide a global platform for healthcare professionals, diabetes educators, and other stakeholders to submit their research on diabetes care.
Types of Publications:
Diabetes and Metabolic Syndrome: Clinical Research and Reviews publishes peer-reviewed original articles, reviews, short communications, case reports, letters to the Editor, and expert comments. Reviews and mini-reviews are particularly welcomed for areas within endocrinology undergoing rapid changes.