On sum-intersecting families of positive integers

IF 1 3区 数学 Q1 MATHEMATICS
Aaron Berger, Nitya Mani
{"title":"On sum-intersecting families of positive integers","authors":"Aaron Berger,&nbsp;Nitya Mani","doi":"10.1016/j.ejc.2024.103963","DOIUrl":null,"url":null,"abstract":"<div><p>We study the following natural arithmetic question regarding intersecting families: how large can a family of subsets of integers from <span><math><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mi>n</mi><mo>}</mo></mrow></math></span> be such that, for every pair of subsets in the family, the intersection contains a <em>sum</em> <span><math><mrow><mi>x</mi><mo>+</mo><mi>y</mi><mo>=</mo><mi>z</mi></mrow></math></span>? We conjecture that any such <em>sum-intersecting</em> family must have size at most <span><math><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mi>⋅</mi><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span> (which would be tight if correct). Towards this conjecture, we show that every sum-intersecting family has at most <span><math><mrow><mn>0</mn><mo>.</mo><mn>32</mn><mi>⋅</mi><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span> subsets.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669824000489","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the following natural arithmetic question regarding intersecting families: how large can a family of subsets of integers from {1,n} be such that, for every pair of subsets in the family, the intersection contains a sum x+y=z? We conjecture that any such sum-intersecting family must have size at most 142n (which would be tight if correct). Towards this conjecture, we show that every sum-intersecting family has at most 0.322n subsets.

关于正整数的相交和族
我们研究以下有关相交族的自然算术问题:对于{1,...n}中的每一对整数子集,其交集包含一个和 x+y=z 的整数子集族能有多大?我们猜想,任何这样的相交和族的大小必须最多为 14⋅2n (如果正确的话,这将是非常小的)。为了实现这一猜想,我们证明每个相交和族最多有 0.32⋅2n 个子集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信