{"title":"Recent advances in applications of graphene-layered double hydroxide nanocomposites in supercapacitors and batteries","authors":"Mahdokht Jafari , Fatemeh Ganjali , Reza Eivazzadeh-Keihan , Ali Maleki , Shokoofeh Geranmayeh","doi":"10.1016/j.flatc.2024.100658","DOIUrl":null,"url":null,"abstract":"<div><p>Highly determined materials have been applied to energy storage devices such as supercapacitors, batteries, etc., to investigate their electrochemical features and match them with ongoing technological developments. In this regard, electrodes based on graphene and layered double hydroxide with two divergent charge-storage mechanisms have been perused to expand the energy storage functionalities. Graphene materials as efficient electrodes have occupied a significant place in supercapacitors and batteries due to their outstanding electrical conductivity, flexibility, and large surface area. Additionally, according to the substantial electrochemical charge transport capabilities, layered double hydroxides are extensively employed in energy storage devices. This review comprehensively investigates the cooperation effect of the electrode composites of the graphene materials and layered double hydroxides and their optimization progress. The electrochemical characteristics of the electrodes have been considered, including specific capacitance, energy density, power density, and capacity retention, affected by pH, synthesis method, reaction temperature, and time. Eventually, the future trend of the electrode materials and their enhancing performance perspective is represented.</p></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"45 ","pages":"Article 100658"},"PeriodicalIF":5.9000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FlatChem","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452262724000527","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Highly determined materials have been applied to energy storage devices such as supercapacitors, batteries, etc., to investigate their electrochemical features and match them with ongoing technological developments. In this regard, electrodes based on graphene and layered double hydroxide with two divergent charge-storage mechanisms have been perused to expand the energy storage functionalities. Graphene materials as efficient electrodes have occupied a significant place in supercapacitors and batteries due to their outstanding electrical conductivity, flexibility, and large surface area. Additionally, according to the substantial electrochemical charge transport capabilities, layered double hydroxides are extensively employed in energy storage devices. This review comprehensively investigates the cooperation effect of the electrode composites of the graphene materials and layered double hydroxides and their optimization progress. The electrochemical characteristics of the electrodes have been considered, including specific capacitance, energy density, power density, and capacity retention, affected by pH, synthesis method, reaction temperature, and time. Eventually, the future trend of the electrode materials and their enhancing performance perspective is represented.
期刊介绍:
FlatChem - Chemistry of Flat Materials, a new voice in the community, publishes original and significant, cutting-edge research related to the chemistry of graphene and related 2D & layered materials. The overall aim of the journal is to combine the chemistry and applications of these materials, where the submission of communications, full papers, and concepts should contain chemistry in a materials context, which can be both experimental and/or theoretical. In addition to original research articles, FlatChem also offers reviews, minireviews, highlights and perspectives on the future of this research area with the scientific leaders in fields related to Flat Materials. Topics of interest include, but are not limited to, the following: -Design, synthesis, applications and investigation of graphene, graphene related materials and other 2D & layered materials (for example Silicene, Germanene, Phosphorene, MXenes, Boron nitride, Transition metal dichalcogenides) -Characterization of these materials using all forms of spectroscopy and microscopy techniques -Chemical modification or functionalization and dispersion of these materials, as well as interactions with other materials -Exploring the surface chemistry of these materials for applications in: Sensors or detectors in electrochemical/Lab on a Chip devices, Composite materials, Membranes, Environment technology, Catalysis for energy storage and conversion (for example fuel cells, supercapacitors, batteries, hydrogen storage), Biomedical technology (drug delivery, biosensing, bioimaging)