Solitons, nonlinear wave transitions and characteristics of quasi-periodic waves for a (3+1)-dimensional generalized Calogero–Bogoyavlenskii–Schiff equation in fluid mechanics and plasma physics

IF 4.6 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Juan Yue , Zhonglong Zhao , Abdul-Majid Wazwaz
{"title":"Solitons, nonlinear wave transitions and characteristics of quasi-periodic waves for a (3+1)-dimensional generalized Calogero–Bogoyavlenskii–Schiff equation in fluid mechanics and plasma physics","authors":"Juan Yue ,&nbsp;Zhonglong Zhao ,&nbsp;Abdul-Majid Wazwaz","doi":"10.1016/j.cjph.2024.03.039","DOIUrl":null,"url":null,"abstract":"<div><p>A (3+1)-dimensional generalized Calogero–Bogoyavlenskii–Schiff equation describing many nonlinear phenomena in fluid dynamics and plasma physics is considered. The <span><math><mi>N</mi></math></span>-solitons and breathers are obtained by basing on its Hirota’s bilinear form and taking the complex conjugate condition on parameters of <span><math><mi>N</mi></math></span>-solitons. What is more, breathers can be transformed into a series of nonlinear localized waves by the mechanism of breather transformation. Then through the multi-dimensional Riemann-theta function and the bilinear method, the high-dimensional complex three-periodic wave solutions are constructed systematically, which are the generalization of one-periodic wave and two-periodic wave solutions. By a limiting procedure, the asymptotic relations between the quasi-periodic waves and solitons are strictly established. Additionally, a novel analytical method of characteristic line is introduced to analyze statistically the dynamical characteristics of the quasi-periodic waves. The analytical method employed in this paper can be further extended to investigate the other complex high-dimensional nonlinear integrable equations.</p></div>","PeriodicalId":10340,"journal":{"name":"Chinese Journal of Physics","volume":"89 ","pages":"Pages 896-929"},"PeriodicalIF":4.6000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S057790732400128X","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A (3+1)-dimensional generalized Calogero–Bogoyavlenskii–Schiff equation describing many nonlinear phenomena in fluid dynamics and plasma physics is considered. The N-solitons and breathers are obtained by basing on its Hirota’s bilinear form and taking the complex conjugate condition on parameters of N-solitons. What is more, breathers can be transformed into a series of nonlinear localized waves by the mechanism of breather transformation. Then through the multi-dimensional Riemann-theta function and the bilinear method, the high-dimensional complex three-periodic wave solutions are constructed systematically, which are the generalization of one-periodic wave and two-periodic wave solutions. By a limiting procedure, the asymptotic relations between the quasi-periodic waves and solitons are strictly established. Additionally, a novel analytical method of characteristic line is introduced to analyze statistically the dynamical characteristics of the quasi-periodic waves. The analytical method employed in this paper can be further extended to investigate the other complex high-dimensional nonlinear integrable equations.

Abstract Image

流体力学和等离子体物理学中 (3+1) 维广义 Calogero-Bogoyavlenskii-Schiff 方程的孤子、非线性波转换和准周期波特征
研究了描述流体动力学和等离子物理学中许多非线性现象的 (3+1) 维广义 Calogero-Bogoyavlenskii-Schiff 方程。根据其 Hirota 双线性方程形式,并对 N-solitons 的参数取复共轭条件,可以得到 N-solitons 和呼吸器。此外,呼吸子还可以通过呼吸子变换机制转化为一系列非线性局部波。然后通过多维黎曼-θ 函数和双线性方法,系统地构造了高维复三周波解,这是对单周期波和双周期波解的概括。通过限制过程,严格建立了准周期波与孤子之间的渐近关系。此外,本文还引入了一种新颖的特征线分析方法,用于统计分析准周期波的动力学特性。本文所采用的分析方法可进一步扩展到研究其他复杂的高维非线性可积分方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chinese Journal of Physics
Chinese Journal of Physics 物理-物理:综合
CiteScore
8.50
自引率
10.00%
发文量
361
审稿时长
44 days
期刊介绍: The Chinese Journal of Physics publishes important advances in various branches in physics, including statistical and biophysical physics, condensed matter physics, atomic/molecular physics, optics, particle physics and nuclear physics. The editors welcome manuscripts on: -General Physics: Statistical and Quantum Mechanics, etc.- Gravitation and Astrophysics- Elementary Particles and Fields- Nuclear Physics- Atomic, Molecular, and Optical Physics- Quantum Information and Quantum Computation- Fluid Dynamics, Nonlinear Dynamics, Chaos, and Complex Networks- Plasma and Beam Physics- Condensed Matter: Structure, etc.- Condensed Matter: Electronic Properties, etc.- Polymer, Soft Matter, Biological, and Interdisciplinary Physics. CJP publishes regular research papers, feature articles and review papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信