Asymptotic behavior of inter-event times in planar systems under event-triggered control

IF 3.7 2区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Anusree Rajan , Pavankumar Tallapragada
{"title":"Asymptotic behavior of inter-event times in planar systems under event-triggered control","authors":"Anusree Rajan ,&nbsp;Pavankumar Tallapragada","doi":"10.1016/j.nahs.2024.101493","DOIUrl":null,"url":null,"abstract":"<div><p>This paper analyzes the asymptotic behavior of inter-event times in planar linear systems, under event-triggered control with a general class of scale-invariant event triggering rules. In this setting, the inter-event time is a function of the “angle” of the state at an event. This viewpoint allows us to analyze the inter-event times by studying the fixed points of the <em>angle map</em>, which represents the evolution of the “angle” of the state from one event to the next. We provide a sufficient condition for the convergence or non-convergence of inter-event times to a steady state value under a scale-invariant event-triggering rule. Following up on this, we further analyze the inter-event time behavior in the special case of threshold based event-triggering rule and we provide various conditions for convergence or non-convergence of inter-event times to a constant. We also analyze the asymptotic average inter-event time as a function of the angle of the initial state of the system. With the help of ergodic theory, we provide a sufficient condition for the asymptotic average inter-event time to be a constant for all non-zero initial states of the system. Then, we consider a special case where the <em>angle map</em> is an orientation-preserving homeomorphism. Using rotation theory, we comment on the asymptotic behavior of the inter-event times, including on whether the inter-event times converge to a periodic sequence. We illustrate the proposed results through numerical simulations.</p></div>","PeriodicalId":49011,"journal":{"name":"Nonlinear Analysis-Hybrid Systems","volume":"53 ","pages":"Article 101493"},"PeriodicalIF":3.7000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Hybrid Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751570X2400030X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper analyzes the asymptotic behavior of inter-event times in planar linear systems, under event-triggered control with a general class of scale-invariant event triggering rules. In this setting, the inter-event time is a function of the “angle” of the state at an event. This viewpoint allows us to analyze the inter-event times by studying the fixed points of the angle map, which represents the evolution of the “angle” of the state from one event to the next. We provide a sufficient condition for the convergence or non-convergence of inter-event times to a steady state value under a scale-invariant event-triggering rule. Following up on this, we further analyze the inter-event time behavior in the special case of threshold based event-triggering rule and we provide various conditions for convergence or non-convergence of inter-event times to a constant. We also analyze the asymptotic average inter-event time as a function of the angle of the initial state of the system. With the help of ergodic theory, we provide a sufficient condition for the asymptotic average inter-event time to be a constant for all non-zero initial states of the system. Then, we consider a special case where the angle map is an orientation-preserving homeomorphism. Using rotation theory, we comment on the asymptotic behavior of the inter-event times, including on whether the inter-event times converge to a periodic sequence. We illustrate the proposed results through numerical simulations.

事件触发控制下平面系统事件间时间的渐近行为
本文分析了平面线性系统中事件间时间的渐近行为,该系统在事件触发控制下,采用了一类规模不变的事件触发规则。在这种情况下,事件间时间是事件发生时状态 "角度 "的函数。这种观点允许我们通过研究角度图的固定点来分析事件间时间,角度图代表了从一个事件到下一个事件的状态 "角度 "的演变。我们提供了在规模不变的事件触发规则下,事件间时间收敛或不收敛到稳态值的充分条件。在此基础上,我们进一步分析了基于阈值的事件触发规则的特殊情况下的事件间时间行为,并提供了事件间时间收敛或不收敛到常数的各种条件。我们还分析了作为系统初始状态角度函数的渐进平均事件间时间。在遍历理论的帮助下,我们提供了一个充分条件,即对于系统的所有非零初始状态,渐近平均事件间时间都是一个常数。然后,我们考虑了角度映射是保向同构的特殊情况。利用旋转理论,我们对事件间时间的渐近行为进行了评论,包括事件间时间是否收敛于周期序列。我们通过数值模拟来说明所提出的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nonlinear Analysis-Hybrid Systems
Nonlinear Analysis-Hybrid Systems AUTOMATION & CONTROL SYSTEMS-MATHEMATICS, APPLIED
CiteScore
8.30
自引率
9.50%
发文量
65
审稿时长
>12 weeks
期刊介绍: Nonlinear Analysis: Hybrid Systems welcomes all important research and expository papers in any discipline. Papers that are principally concerned with the theory of hybrid systems should contain significant results indicating relevant applications. Papers that emphasize applications should consist of important real world models and illuminating techniques. Papers that interrelate various aspects of hybrid systems will be most welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信