Smallest quasi-transitive extensions

IF 1 4区 经济学 Q3 ECONOMICS
Walter Bossert , Susumu Cato , Kohei Kamaga
{"title":"Smallest quasi-transitive extensions","authors":"Walter Bossert ,&nbsp;Susumu Cato ,&nbsp;Kohei Kamaga","doi":"10.1016/j.jmateco.2024.102983","DOIUrl":null,"url":null,"abstract":"<div><p>Quasi-transitivity is a weakening of transitivity that has some attractive features, such as the important role it plays in the context of path-independent choice. However, the property suffers from the shortcoming that it does not allow for the existence of a closure operator. This paper examines the question to what extent an alternative operator can be defined that may then be used to ameliorate some of the limitations of quasi-transitivity imposed by the absence of a well-defined closure. To do so, we define the concept of a smallest quasi-transitive extension. A novel weakening of quasi-transitivity turns out to be necessary and sufficient for the existence of such a smallest extension. As an illustration, we apply the notion of a smallest quasi-transitive extension in the context of rational choice on arbitrary domains.</p></div>","PeriodicalId":50145,"journal":{"name":"Journal of Mathematical Economics","volume":"112 ","pages":"Article 102983"},"PeriodicalIF":1.0000,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Economics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304406824000454","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Quasi-transitivity is a weakening of transitivity that has some attractive features, such as the important role it plays in the context of path-independent choice. However, the property suffers from the shortcoming that it does not allow for the existence of a closure operator. This paper examines the question to what extent an alternative operator can be defined that may then be used to ameliorate some of the limitations of quasi-transitivity imposed by the absence of a well-defined closure. To do so, we define the concept of a smallest quasi-transitive extension. A novel weakening of quasi-transitivity turns out to be necessary and sufficient for the existence of such a smallest extension. As an illustration, we apply the notion of a smallest quasi-transitive extension in the context of rational choice on arbitrary domains.

最小的准传递扩展
准反证法是对反证法的一种弱化,它有一些吸引人的特点,比如它在路径无关选择中发挥着重要作用。然而,这一特性存在一个缺陷,即它不允许存在一个封闭算子。本文探讨的问题是,在多大程度上可以定义一个替代算子,从而用来改善由于缺乏定义明确的封闭性而对准传递性造成的一些限制。为此,我们定义了最小准传递扩展的概念。事实证明,对准传递性的一种新的弱化是这种最小扩展存在的必要条件和充分条件。作为说明,我们将最小准传递扩展的概念应用于任意域上的理性选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Mathematical Economics
Journal of Mathematical Economics 管理科学-数学跨学科应用
CiteScore
1.70
自引率
7.70%
发文量
73
审稿时长
12.5 weeks
期刊介绍: The primary objective of the Journal is to provide a forum for work in economic theory which expresses economic ideas using formal mathematical reasoning. For work to add to this primary objective, it is not sufficient that the mathematical reasoning be new and correct. The work must have real economic content. The economic ideas must be interesting and important. These ideas may pertain to any field of economics or any school of economic thought.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信