{"title":"Smallest quasi-transitive extensions","authors":"Walter Bossert , Susumu Cato , Kohei Kamaga","doi":"10.1016/j.jmateco.2024.102983","DOIUrl":null,"url":null,"abstract":"<div><p>Quasi-transitivity is a weakening of transitivity that has some attractive features, such as the important role it plays in the context of path-independent choice. However, the property suffers from the shortcoming that it does not allow for the existence of a closure operator. This paper examines the question to what extent an alternative operator can be defined that may then be used to ameliorate some of the limitations of quasi-transitivity imposed by the absence of a well-defined closure. To do so, we define the concept of a smallest quasi-transitive extension. A novel weakening of quasi-transitivity turns out to be necessary and sufficient for the existence of such a smallest extension. As an illustration, we apply the notion of a smallest quasi-transitive extension in the context of rational choice on arbitrary domains.</p></div>","PeriodicalId":50145,"journal":{"name":"Journal of Mathematical Economics","volume":"112 ","pages":"Article 102983"},"PeriodicalIF":1.0000,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Economics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304406824000454","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Quasi-transitivity is a weakening of transitivity that has some attractive features, such as the important role it plays in the context of path-independent choice. However, the property suffers from the shortcoming that it does not allow for the existence of a closure operator. This paper examines the question to what extent an alternative operator can be defined that may then be used to ameliorate some of the limitations of quasi-transitivity imposed by the absence of a well-defined closure. To do so, we define the concept of a smallest quasi-transitive extension. A novel weakening of quasi-transitivity turns out to be necessary and sufficient for the existence of such a smallest extension. As an illustration, we apply the notion of a smallest quasi-transitive extension in the context of rational choice on arbitrary domains.
期刊介绍:
The primary objective of the Journal is to provide a forum for work in economic theory which expresses economic ideas using formal mathematical reasoning. For work to add to this primary objective, it is not sufficient that the mathematical reasoning be new and correct. The work must have real economic content. The economic ideas must be interesting and important. These ideas may pertain to any field of economics or any school of economic thought.