{"title":"The immune landscape and prognostic analysis of CXCL8 immune-related genes in cervical squamous cell carcinoma","authors":"Xiaoqian Zhang, Jian Yang, Qianqian Feng, Liping Gu, Gongzhao Qin, Chen Cheng, Shunyu Hou, Zhouhong Shi","doi":"10.1002/tox.24283","DOIUrl":null,"url":null,"abstract":"Cervical squamous cell carcinoma (CESC), one of the most common malignancies in women, imposes a significant burden on women's health worldwide. Despite extensive research, the molecular and pathogenic mechanisms of cervical squamous cell carcinoma and CESC remain unclear. This study aimed to explore the immune-related genes, immune microenvironment infiltration, and prognosis of CESC, providing a theoretical basis for guiding clinical treatment. Initially, by mining four gene sets and immune-related gene sets from public databases, 14 immune-related genes associated with CESC were identified. Through univariate and multivariate COX regression analyses, as well as lasso regression analysis, four CESC-independent prognostic genes were identified, and a prognostic model was constructed, dividing them into high and low-risk groups. The correlation between these genes and immune cells and immune functions were explored through ssGSEA enrichment analysis, revealing a close association between the high-risk group and processes such as angiogenesis and epithelial–mesenchymal transition. Furthermore, using public databases and qRT-PCR experiments, significant differences in CXCL8 expression between normal cervical cells and cervical cancer cells were discovered. Subsequently, a CXCL8 knockdown plasmid was constructed, and the efficiency of CXCL8 knockdown was validated in two CESC cell lines, MEG-01 and HCE-1. Through CCK-8, scratch, and Transwell assays, it was confirmed that CXCL8 knockdown could inhibit the proliferation, invasion, and migration abilities of CESC cells. Targeting CXCL8 holds promise for personalized therapy for CESC, providing a strong theoretical basis for achieving clinical translation.","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/tox.24283","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Cervical squamous cell carcinoma (CESC), one of the most common malignancies in women, imposes a significant burden on women's health worldwide. Despite extensive research, the molecular and pathogenic mechanisms of cervical squamous cell carcinoma and CESC remain unclear. This study aimed to explore the immune-related genes, immune microenvironment infiltration, and prognosis of CESC, providing a theoretical basis for guiding clinical treatment. Initially, by mining four gene sets and immune-related gene sets from public databases, 14 immune-related genes associated with CESC were identified. Through univariate and multivariate COX regression analyses, as well as lasso regression analysis, four CESC-independent prognostic genes were identified, and a prognostic model was constructed, dividing them into high and low-risk groups. The correlation between these genes and immune cells and immune functions were explored through ssGSEA enrichment analysis, revealing a close association between the high-risk group and processes such as angiogenesis and epithelial–mesenchymal transition. Furthermore, using public databases and qRT-PCR experiments, significant differences in CXCL8 expression between normal cervical cells and cervical cancer cells were discovered. Subsequently, a CXCL8 knockdown plasmid was constructed, and the efficiency of CXCL8 knockdown was validated in two CESC cell lines, MEG-01 and HCE-1. Through CCK-8, scratch, and Transwell assays, it was confirmed that CXCL8 knockdown could inhibit the proliferation, invasion, and migration abilities of CESC cells. Targeting CXCL8 holds promise for personalized therapy for CESC, providing a strong theoretical basis for achieving clinical translation.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.