Facile fabrication of a Z-scheme g-C3N5/Gd-MOF/silver nanocube composite as a new generation visible light active photocatalyst for abatement of persistent toxic pollutants†
Varsha UshaVipinachandran and Susanta Kumar Bhunia
{"title":"Facile fabrication of a Z-scheme g-C3N5/Gd-MOF/silver nanocube composite as a new generation visible light active photocatalyst for abatement of persistent toxic pollutants†","authors":"Varsha UshaVipinachandran and Susanta Kumar Bhunia","doi":"10.1039/D3EN00913K","DOIUrl":null,"url":null,"abstract":"<p >Some of the persistent hazardous contaminants that readily dissolve in water with a recognizable hue are hexavalent chromium and neomycin antibiotic. Herein, a Z-scheme g-C<small><sub>3</sub></small>N<small><sub>5</sub></small>/Gd-MOF/silver nanocube (CNGdAg) ternary composite was successfully designed by the combination of graphitic carbon nitride (g-C<small><sub>3</sub></small>N<small><sub>5</sub></small>), gadolinium-based molecular organic framework (Gd-MOF), and silver nanocubes (AgNCs). Under visible light irradiation, CNGdAg outperforms individual components and binary composites in the photoreduction of hexavalent chromium (Cr<small><sup>6+</sup></small>) and removal of neomycin. The maximum photocatalytic efficiency of Cr<small><sup>6+</sup></small> (98%) in 150 minutes and complete neomycin removal in 25 minutes were accomplished by the CNGdAg-40% composite. A hydrothermal approach was chosen to prepare this visible light active composite. The formation of photogenerated electrons and superoxide radicals plays a major contributing factor in the efficient degradation in a short period without using any external components. The combined effect of the individual components in the composite led to the remarkable degradation <em>via</em> the Z-scheme pathway. This work exemplifies that the CNGdAg-40% photocatalyst can be used for the removal of heavy metal ions and organic contaminants from aquatic environments.</p>","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":" 6","pages":" 2467-2480"},"PeriodicalIF":5.1000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Nano","FirstCategoryId":"6","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/en/d3en00913k","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Some of the persistent hazardous contaminants that readily dissolve in water with a recognizable hue are hexavalent chromium and neomycin antibiotic. Herein, a Z-scheme g-C3N5/Gd-MOF/silver nanocube (CNGdAg) ternary composite was successfully designed by the combination of graphitic carbon nitride (g-C3N5), gadolinium-based molecular organic framework (Gd-MOF), and silver nanocubes (AgNCs). Under visible light irradiation, CNGdAg outperforms individual components and binary composites in the photoreduction of hexavalent chromium (Cr6+) and removal of neomycin. The maximum photocatalytic efficiency of Cr6+ (98%) in 150 minutes and complete neomycin removal in 25 minutes were accomplished by the CNGdAg-40% composite. A hydrothermal approach was chosen to prepare this visible light active composite. The formation of photogenerated electrons and superoxide radicals plays a major contributing factor in the efficient degradation in a short period without using any external components. The combined effect of the individual components in the composite led to the remarkable degradation via the Z-scheme pathway. This work exemplifies that the CNGdAg-40% photocatalyst can be used for the removal of heavy metal ions and organic contaminants from aquatic environments.
期刊介绍:
Environmental Science: Nano serves as a comprehensive and high-impact peer-reviewed source of information on the design and demonstration of engineered nanomaterials for environment-based applications. It also covers the interactions between engineered, natural, and incidental nanomaterials with biological and environmental systems. This scope includes, but is not limited to, the following topic areas:
Novel nanomaterial-based applications for water, air, soil, food, and energy sustainability
Nanomaterial interactions with biological systems and nanotoxicology
Environmental fate, reactivity, and transformations of nanoscale materials
Nanoscale processes in the environment
Sustainable nanotechnology including rational nanomaterial design, life cycle assessment, risk/benefit analysis