Biomass pretreatment, bioprocessing and reactor design for biohydrogen production: a review

IF 15 2区 环境科学与生态学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Sahil Sahil, Rickwinder Singh, Shyam K. Masakapalli, Nidhi Pareek, Andrey A. Kovalev, Yuriy V. Litti, Sonil Nanda, Vivekanand Vivekanand
{"title":"Biomass pretreatment, bioprocessing and reactor design for biohydrogen production: a review","authors":"Sahil Sahil,&nbsp;Rickwinder Singh,&nbsp;Shyam K. Masakapalli,&nbsp;Nidhi Pareek,&nbsp;Andrey A. Kovalev,&nbsp;Yuriy V. Litti,&nbsp;Sonil Nanda,&nbsp;Vivekanand Vivekanand","doi":"10.1007/s10311-024-01722-6","DOIUrl":null,"url":null,"abstract":"<div><p>The negative effects of the accelerating climate change due partly to fossil fuel consumption is calling for the rapid development of sustainable energies such as biohydrogen, which is produced using microorganisms. Here we review biohydrogen production from biomass, with focus on biomass pretreatment, fermentative production, factors affecting production, bioreactors, kinetics and modeling, and improved production with nanoparticles. Pretreatments include chemical, physical and biological methods. Hydrogen production is done by photo-fermentation or dark fermentation. Influencing factors comprise pH, temperature, hydraulic retention time, and the presence of fermentation inhibitors. Continuous stirred tank-, anaerobic fluidized bed-, anaerobic sequencing batch-, up-flow anaerobic sludge blanket- and dynamic membrane reactors are used. Additives include cobalt, nickel and iron nanoparticles. Compared to thermochemical, photochemical and electrochemical processes, biohydrogen production needs more time but is easy to operate, cost-effective and environmentally friendly.</p></div>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"22 4","pages":"1665 - 1702"},"PeriodicalIF":15.0000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Chemistry Letters","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10311-024-01722-6","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The negative effects of the accelerating climate change due partly to fossil fuel consumption is calling for the rapid development of sustainable energies such as biohydrogen, which is produced using microorganisms. Here we review biohydrogen production from biomass, with focus on biomass pretreatment, fermentative production, factors affecting production, bioreactors, kinetics and modeling, and improved production with nanoparticles. Pretreatments include chemical, physical and biological methods. Hydrogen production is done by photo-fermentation or dark fermentation. Influencing factors comprise pH, temperature, hydraulic retention time, and the presence of fermentation inhibitors. Continuous stirred tank-, anaerobic fluidized bed-, anaerobic sequencing batch-, up-flow anaerobic sludge blanket- and dynamic membrane reactors are used. Additives include cobalt, nickel and iron nanoparticles. Compared to thermochemical, photochemical and electrochemical processes, biohydrogen production needs more time but is easy to operate, cost-effective and environmentally friendly.

Abstract Image

生物质预处理、生物加工和生物制氢反应器设计:综述
部分由于化石燃料消耗造成的气候变化加速所带来的负面影响,要求快速开发可持续能源,如利用微生物生产的生物氢。在此,我们回顾了利用生物质生产生物氢的情况,重点是生物质预处理、发酵生产、影响生产的因素、生物反应器、动力学和建模,以及利用纳米颗粒改进生产。预处理包括化学、物理和生物方法。制氢是通过光发酵或暗发酵进行的。影响因素包括 pH 值、温度、水力停留时间和发酵抑制剂的存在。使用的反应器包括连续搅拌罐、厌氧流化床、厌氧序批式、上流式厌氧污泥毯和动态膜反应器。添加剂包括钴、镍和铁纳米颗粒。与热化学、光化学和电化学工艺相比,生物制氢需要更多时间,但易于操作、成本效益高且环保。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Chemistry Letters
Environmental Chemistry Letters 环境科学-工程:环境
CiteScore
32.00
自引率
7.00%
发文量
175
审稿时长
2 months
期刊介绍: Environmental Chemistry Letters explores the intersections of geology, chemistry, physics, and biology. Published articles are of paramount importance to the examination of both natural and engineered environments. The journal features original and review articles of exceptional significance, encompassing topics such as the characterization of natural and impacted environments, the behavior, prevention, treatment, and control of mineral, organic, and radioactive pollutants. It also delves into interfacial studies involving diverse media like soil, sediment, water, air, organisms, and food. Additionally, the journal covers green chemistry, environmentally friendly synthetic pathways, alternative fuels, ecotoxicology, risk assessment, environmental processes and modeling, environmental technologies, remediation and control, and environmental analytical chemistry using biomolecular tools and tracers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信