Robust space-time finite element methods for parabolic distributed optimal control problems with energy regularization

IF 1.7 3区 数学 Q2 MATHEMATICS, APPLIED
Ulrich Langer, Olaf Steinbach, Huidong Yang
{"title":"Robust space-time finite element methods for parabolic distributed optimal control problems with energy regularization","authors":"Ulrich Langer,&nbsp;Olaf Steinbach,&nbsp;Huidong Yang","doi":"10.1007/s10444-024-10123-w","DOIUrl":null,"url":null,"abstract":"<div><p>As in our previous work (<i>SINUM</i> 59(2):660–674, 2021) we consider space-time tracking optimal control problems for linear parabolic initial boundary value problems that are given in the space-time cylinder <span>\\(Q = \\Omega \\times (0,T)\\)</span>, and that are controlled by the right-hand side <span>\\(z_\\varrho \\)</span> from the Bochner space <span>\\(L^2(0,T;H^{-1}(\\Omega ))\\)</span>. So it is natural to replace the usual <span>\\(L^2(Q)\\)</span> norm regularization by the energy regularization in the <span>\\(L^2(0,T;H^{-1}(\\Omega ))\\)</span> norm. We derive new a priori estimates for the error <span>\\(\\Vert \\widetilde{u}_{\\varrho h} - \\overline{u}\\Vert _{L^2(Q)}\\)</span> between the computed state <span>\\(\\widetilde{u}_{\\varrho h}\\)</span> and the desired state <span>\\(\\overline{u}\\)</span> in terms of the regularization parameter <span>\\(\\varrho \\)</span> and the space-time finite element mesh size <i>h</i>, and depending on the regularity of the desired state <span>\\(\\overline{u}\\)</span>. These new estimates lead to the optimal choice <span>\\(\\varrho = h^2\\)</span>. The approximate state <span>\\(\\widetilde{u}_{\\varrho h}\\)</span> is computed by means of a space-time finite element method using piecewise linear and continuous basis functions on completely unstructured simplicial meshes for <i>Q</i>. The theoretical results are quantitatively illustrated by a series of numerical examples in two and three space dimensions. We also provide performance studies for different solvers.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10444-024-10123-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10444-024-10123-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

As in our previous work (SINUM 59(2):660–674, 2021) we consider space-time tracking optimal control problems for linear parabolic initial boundary value problems that are given in the space-time cylinder \(Q = \Omega \times (0,T)\), and that are controlled by the right-hand side \(z_\varrho \) from the Bochner space \(L^2(0,T;H^{-1}(\Omega ))\). So it is natural to replace the usual \(L^2(Q)\) norm regularization by the energy regularization in the \(L^2(0,T;H^{-1}(\Omega ))\) norm. We derive new a priori estimates for the error \(\Vert \widetilde{u}_{\varrho h} - \overline{u}\Vert _{L^2(Q)}\) between the computed state \(\widetilde{u}_{\varrho h}\) and the desired state \(\overline{u}\) in terms of the regularization parameter \(\varrho \) and the space-time finite element mesh size h, and depending on the regularity of the desired state \(\overline{u}\). These new estimates lead to the optimal choice \(\varrho = h^2\). The approximate state \(\widetilde{u}_{\varrho h}\) is computed by means of a space-time finite element method using piecewise linear and continuous basis functions on completely unstructured simplicial meshes for Q. The theoretical results are quantitatively illustrated by a series of numerical examples in two and three space dimensions. We also provide performance studies for different solvers.

带能量正则化的抛物分布式最优控制问题的鲁棒时空有限元方法
正如我们之前的工作(SINUM 59(2):660-674, 2021)一样,我们考虑的是线性抛物线初始边界值问题的时空跟踪最优控制问题,这些问题在时空圆柱体 \(Q = \Omega \times (0,T)\) 中给出,并且由来自 Bochner 空间 \(L^2(0,T;H^{-1}(\Omega ))\) 的右手边 \(z_\varrho \) 控制。因此,用 \(L^2(0,T;H^{-1}(\Omega ))\) 规范中的能量正则化来替换通常的 \(L^2(Q)\) 规范正则化是很自然的。我们根据正则化参数(\(\varrho \))和时空有限元网格大小(h)为计算状态(\(\widetilde{u}_{\varrho h})和期望状态(\(\overline{u}\))之间的误差((\Vert \widetilde{u}_{\varrho h} - \overline{u}\Vert_{L^2(Q)}\)推导出新的先验估计值、的正则性。这些新的估计导致了最优选择(\varrho = h^2)。近似状态 (\(\widetilde{u}_{\varrho h}\)是通过时空有限元方法计算出来的,该方法在 Q 的完全非结构化简网格上使用片断线性和连续基函数。我们还提供了不同求解器的性能研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
5.90%
发文量
68
审稿时长
3 months
期刊介绍: Advances in Computational Mathematics publishes high quality, accessible and original articles at the forefront of computational and applied mathematics, with a clear potential for impact across the sciences. The journal emphasizes three core areas: approximation theory and computational geometry; numerical analysis, modelling and simulation; imaging, signal processing and data analysis. This journal welcomes papers that are accessible to a broad audience in the mathematical sciences and that show either an advance in computational methodology or a novel scientific application area, or both. Methods papers should rely on rigorous analysis and/or convincing numerical studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信