Investigation on improving the comprehensive performance of environmental barrier coating materials by high-entropy multiphase design

IF 6.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zeyu Chen, Yongzhe Wang, Yiling Huang, Fan Peng, Chucheng Lin, Wei Zheng, Xuemei Song, Yaran Niu, Yi Zeng
{"title":"Investigation on improving the comprehensive performance of environmental barrier coating materials by high-entropy multiphase design","authors":"Zeyu Chen, Yongzhe Wang, Yiling Huang, Fan Peng, Chucheng Lin, Wei Zheng, Xuemei Song, Yaran Niu, Yi Zeng","doi":"10.1038/s41529-024-00455-9","DOIUrl":null,"url":null,"abstract":"It is difficult to obtain a single-phase environmental barrier coating material that simultaneously offers the advantages of low thermal conductivity, a suitable coefficient of thermal expansion, and excellent corrosion resistance. Herein, to synthesize the advantages of single-phase materials, we have developed an effective approach for the design of high-entropy multiphase ceramics of rare earth oxides and silicates. Such a specific design approach is capable of making high-entropy RE2SiO5/RE2O3 and RE2SiO5/RE2Si2O7 (RE = Lu, Yb, Tm, Er, Ho, and Y) multiphase ceramics as two types of potential environmental barrier coating materials for Al2O3f/Al2O3 and SiCf/SiC ceramic matrix composites.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":null,"pages":null},"PeriodicalIF":6.6000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00455-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Materials Degradation","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41529-024-00455-9","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

It is difficult to obtain a single-phase environmental barrier coating material that simultaneously offers the advantages of low thermal conductivity, a suitable coefficient of thermal expansion, and excellent corrosion resistance. Herein, to synthesize the advantages of single-phase materials, we have developed an effective approach for the design of high-entropy multiphase ceramics of rare earth oxides and silicates. Such a specific design approach is capable of making high-entropy RE2SiO5/RE2O3 and RE2SiO5/RE2Si2O7 (RE = Lu, Yb, Tm, Er, Ho, and Y) multiphase ceramics as two types of potential environmental barrier coating materials for Al2O3f/Al2O3 and SiCf/SiC ceramic matrix composites.

Abstract Image

通过高熵多相设计提高环境阻隔涂层材料综合性能的研究
要获得一种同时具有低热导率、合适的热膨胀系数和优异的耐腐蚀性等优点的单相环境屏障涂层材料十分困难。在此,为了综合单相材料的优势,我们开发了一种设计稀土氧化物和硅酸盐高熵多相陶瓷的有效方法。这种特定的设计方法能够制造出高熵 RE2SiO5/RE2O3 和 RE2SiO5/RE2Si2O7 (RE = Lu、Yb、Tm、Er、Ho 和 Y)多相陶瓷,作为 Al2O3f/Al2O3 和 SiCf/SiC 陶瓷基复合材料的两种潜在环境屏障涂层材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Materials Degradation
npj Materials Degradation MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.80
自引率
7.80%
发文量
86
审稿时长
6 weeks
期刊介绍: npj Materials Degradation considers basic and applied research that explores all aspects of the degradation of metallic and non-metallic materials. The journal broadly defines ‘materials degradation’ as a reduction in the ability of a material to perform its task in-service as a result of environmental exposure. The journal covers a broad range of topics including but not limited to: -Degradation of metals, glasses, minerals, polymers, ceramics, cements and composites in natural and engineered environments, as a result of various stimuli -Computational and experimental studies of degradation mechanisms and kinetics -Characterization of degradation by traditional and emerging techniques -New approaches and technologies for enhancing resistance to degradation -Inspection and monitoring techniques for materials in-service, such as sensing technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信