Michele Ciarletta , Brian Straughan , Vincenzo Tibullo
{"title":"Discontinuity waves in temperature and diffusion models","authors":"Michele Ciarletta , Brian Straughan , Vincenzo Tibullo","doi":"10.1016/j.mechrescom.2024.104274","DOIUrl":null,"url":null,"abstract":"<div><p>We analyse shock wave behaviour in a hyperbolic diffusion system with a general forcing term which is qualitatively not dissimilar to a logistic growth term. The amplitude behaviour is interesting and depends critically on a parameter in the forcing term. We also develop a fully nonlinear acceleration wave analysis for a hyperbolic theory of diffusion coupled to temperature evolution. We consider a rigid body and we show that for three-dimensional waves there is a fast wave and a slow wave. The amplitude equation is derived exactly for a one-dimensional (plane) wave and the amplitude is found for a wave moving into a region of constant temperature and solute concentration. This analysis is generalized to allow for forcing terms of Selkov–Schnakenberg, or Al Ghoul-Eu cubic reaction type. We briefly consider a nonlinear acceleration wave in a heat conduction theory with two solutes present, resulting in a model with equations for temperature and each of two solute concentrations. Here it is shown that three waves may propagate.</p></div>","PeriodicalId":49846,"journal":{"name":"Mechanics Research Communications","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics Research Communications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009364132400034X","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
We analyse shock wave behaviour in a hyperbolic diffusion system with a general forcing term which is qualitatively not dissimilar to a logistic growth term. The amplitude behaviour is interesting and depends critically on a parameter in the forcing term. We also develop a fully nonlinear acceleration wave analysis for a hyperbolic theory of diffusion coupled to temperature evolution. We consider a rigid body and we show that for three-dimensional waves there is a fast wave and a slow wave. The amplitude equation is derived exactly for a one-dimensional (plane) wave and the amplitude is found for a wave moving into a region of constant temperature and solute concentration. This analysis is generalized to allow for forcing terms of Selkov–Schnakenberg, or Al Ghoul-Eu cubic reaction type. We briefly consider a nonlinear acceleration wave in a heat conduction theory with two solutes present, resulting in a model with equations for temperature and each of two solute concentrations. Here it is shown that three waves may propagate.
期刊介绍:
Mechanics Research Communications publishes, as rapidly as possible, peer-reviewed manuscripts of high standards but restricted length. It aims to provide:
• a fast means of communication
• an exchange of ideas among workers in mechanics
• an effective method of bringing new results quickly to the public
• an informal vehicle for the discussion
• of ideas that may still be in the formative stages
The field of Mechanics will be understood to encompass the behavior of continua, fluids, solids, particles and their mixtures. Submissions must contain a strong, novel contribution to the field of mechanics, and ideally should be focused on current issues in the field involving theoretical, experimental and/or applied research, preferably within the broad expertise encompassed by the Board of Associate Editors. Deviations from these areas should be discussed in advance with the Editor-in-Chief.