Lipschitz Norm Estimate for a Higher Order Singular Integral Operator

IF 1.1 2区 数学 Q2 MATHEMATICS, APPLIED
Tania Rosa Gómez Santiesteban, Ricardo Abreu Blaya, Juan Carlos Hernández Gómez, José Luis Sánchez Santiesteban
{"title":"Lipschitz Norm Estimate for a Higher Order Singular Integral Operator","authors":"Tania Rosa Gómez Santiesteban,&nbsp;Ricardo Abreu Blaya,&nbsp;Juan Carlos Hernández Gómez,&nbsp;José Luis Sánchez Santiesteban","doi":"10.1007/s00006-024-01321-2","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(\\Gamma \\)</span> be a <i>d</i>-summable surface in <span>\\(\\mathbb {R}^m\\)</span>, i.e., the boundary of a Jordan domain in <span>\\( \\mathbb {R}^m\\)</span>, such that <span>\\(\\int \\nolimits _{0}^{1}N_{\\Gamma }(\\tau )\\tau ^{d-1}\\textrm{d}\\tau &lt;+\\infty \\)</span>, where <span>\\(N_{\\Gamma }(\\tau )\\)</span> is the number of balls of radius <span>\\(\\tau \\)</span> needed to cover <span>\\(\\Gamma \\)</span> and <span>\\(m-1&lt;d&lt;m\\)</span>. In this paper, we consider a singular integral operator <span>\\(S_\\Gamma ^*\\)</span> associated with the iterated equation <span>\\({\\mathcal {D}}_{\\underline{x}}^k f=0\\)</span>, where <span>\\({\\mathcal {D}}_{\\underline{x}}\\)</span> stands for the Dirac operator constructed with the orthonormal basis of <span>\\( \\mathbb {R}^m\\)</span>. The fundamental result obtained establishes that if <span>\\(\\alpha &gt;\\frac{d}{m}\\)</span>, the operator <span>\\(S_\\Gamma ^*\\)</span> transforms functions of the higher order Lipschitz class <span>\\(\\text{ Lip }(\\Gamma , k +\\alpha )\\)</span> into functions of the class <span>\\(\\text{ Lip }(\\Gamma , k +\\beta )\\)</span>, for <span>\\(\\beta =\\frac{m\\alpha -d}{m-d}\\)</span>. In addition, an estimate for its norm is obtained.\n</p></div>","PeriodicalId":7330,"journal":{"name":"Advances in Applied Clifford Algebras","volume":"34 3","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Clifford Algebras","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00006-024-01321-2","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(\Gamma \) be a d-summable surface in \(\mathbb {R}^m\), i.e., the boundary of a Jordan domain in \( \mathbb {R}^m\), such that \(\int \nolimits _{0}^{1}N_{\Gamma }(\tau )\tau ^{d-1}\textrm{d}\tau <+\infty \), where \(N_{\Gamma }(\tau )\) is the number of balls of radius \(\tau \) needed to cover \(\Gamma \) and \(m-1<d<m\). In this paper, we consider a singular integral operator \(S_\Gamma ^*\) associated with the iterated equation \({\mathcal {D}}_{\underline{x}}^k f=0\), where \({\mathcal {D}}_{\underline{x}}\) stands for the Dirac operator constructed with the orthonormal basis of \( \mathbb {R}^m\). The fundamental result obtained establishes that if \(\alpha >\frac{d}{m}\), the operator \(S_\Gamma ^*\) transforms functions of the higher order Lipschitz class \(\text{ Lip }(\Gamma , k +\alpha )\) into functions of the class \(\text{ Lip }(\Gamma , k +\beta )\), for \(\beta =\frac{m\alpha -d}{m-d}\). In addition, an estimate for its norm is obtained.

高阶奇异积分算子的 Lipschitz Norm 估计数
让 \(\Gamma \) 是 \(\mathbb {R}^m\) 中的一个可和曲面,即、的边界,使得(int nolimits _{0}^{1}N_{\Gamma }(\tau )\tau ^{d-1}\textrm{d}\tau <;+\其中,(N_{\Gamma }(\tau )\)是覆盖\(\Gamma \)和\(m-1<d<m\)所需的半径为\(\tau \)的球的个数。)在本文中,我们考虑与迭代方程 \({\mathcal {D}}_{\underline{x}}^k f=0\) 相关的奇异积分算子 \(S_\Gamma ^*\),其中 \({\mathcal {D}}_{\underline{x}} 代表用 \( \mathbb {R}^m\) 的正交基础构造的狄拉克算子。)得到的基本结果证明,如果 \(\alpha >;\算子(S_\Gamma ^*\)将高阶 Lipschitz 类 \(\text{ Lip }(\Gamma , k +\alpha )\)的函数转换成类 \(\text{ Lip }(\Gamma , k +\beta )\)的函数,对于 \(\beta =\frac{m\alpha -d}{m-d}\).此外,还得到了对其规范的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Applied Clifford Algebras
Advances in Applied Clifford Algebras 数学-物理:数学物理
CiteScore
2.20
自引率
13.30%
发文量
56
审稿时长
3 months
期刊介绍: Advances in Applied Clifford Algebras (AACA) publishes high-quality peer-reviewed research papers as well as expository and survey articles in the area of Clifford algebras and their applications to other branches of mathematics, physics, engineering, and related fields. The journal ensures rapid publication and is organized in six sections: Analysis, Differential Geometry and Dirac Operators, Mathematical Structures, Theoretical and Mathematical Physics, Applications, and Book Reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信