A Note on Cohomology of Clifford Algebras

IF 1.1 2区 数学 Q2 MATHEMATICS, APPLIED
Bikram Banerjee, Goutam Mukherjee
{"title":"A Note on Cohomology of Clifford Algebras","authors":"Bikram Banerjee,&nbsp;Goutam Mukherjee","doi":"10.1007/s00006-024-01324-z","DOIUrl":null,"url":null,"abstract":"<div><p>In this article we construct a cochain complex of a complex Clifford algebra with coefficients in itself in a combinatorial fashion and we call the corresponding cohomology by <i>Clifford cohomology.</i> We show that <i>Clifford cohomology</i> controls the deformation of a complex Clifford algebra and can classify them up to Morita equivalence. We also study Hochschild cohomology groups and formal deformations of the algebra of smooth sections of a complex Clifford algebra bundle over an even dimensional orientable Riemannian manifold <i>M</i> which admits a <span>\\(Spin^{c}\\)</span> structure.</p></div>","PeriodicalId":7330,"journal":{"name":"Advances in Applied Clifford Algebras","volume":"34 3","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Clifford Algebras","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00006-024-01324-z","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this article we construct a cochain complex of a complex Clifford algebra with coefficients in itself in a combinatorial fashion and we call the corresponding cohomology by Clifford cohomology. We show that Clifford cohomology controls the deformation of a complex Clifford algebra and can classify them up to Morita equivalence. We also study Hochschild cohomology groups and formal deformations of the algebra of smooth sections of a complex Clifford algebra bundle over an even dimensional orientable Riemannian manifold M which admits a \(Spin^{c}\) structure.

关于克利福德代数同调的说明
在这篇文章中,我们以组合的方式构建了一个复克利福德代数的共链复数,其系数本身就是复克利福德代数,我们称相应的同调为克利福德同调。我们证明,Clifford cohomology 控制着复 Clifford 代数的变形,并能对它们进行莫里塔等价分类。我们还研究了在偶数维可定向黎曼流形 M 上的复(Clifford)代数束的光滑截面代数的霍赫希尔德(Hochschild)同调群和形式变形,该流形承认一个 \(Spin^{c}\) 结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Applied Clifford Algebras
Advances in Applied Clifford Algebras 数学-物理:数学物理
CiteScore
2.20
自引率
13.30%
发文量
56
审稿时长
3 months
期刊介绍: Advances in Applied Clifford Algebras (AACA) publishes high-quality peer-reviewed research papers as well as expository and survey articles in the area of Clifford algebras and their applications to other branches of mathematics, physics, engineering, and related fields. The journal ensures rapid publication and is organized in six sections: Analysis, Differential Geometry and Dirac Operators, Mathematical Structures, Theoretical and Mathematical Physics, Applications, and Book Reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信