Shilpa Malakar, Emmanuel Nuah Gontor, Moses Y. Dugbaye, Kamal Shah, Sakshi Sinha, Priya Sutaoney, Nagendra Singh Chauhan
{"title":"Cancer treatment with biosimilar drugs: A review","authors":"Shilpa Malakar, Emmanuel Nuah Gontor, Moses Y. Dugbaye, Kamal Shah, Sakshi Sinha, Priya Sutaoney, Nagendra Singh Chauhan","doi":"10.1002/cai2.115","DOIUrl":null,"url":null,"abstract":"<p>Biosimilars are biological drugs created from living organisms or that contain living components. They share an identical amino-acid sequence and immunogenicity. These drugs are considered to be cost-effective and are utilized in the treatment of cancer and other endocrine disorders. The primary aim of biosimilars is to predict biosimilarity, efficacy, and treatment costs; they are approved by the Food and Drug Administration (FDA) and have no clinical implications. They involve analytical studies to understand the similarities and dissimilarities. A biosimilar manufacturer sets up FDA-approved reference products to evaluate biosimilarity. The contribution of next-generation sequencing is evolving to study the organ tumor and its progression with its impactful therapeutic approach on cancer patients to showcase and target rare mutations. The study shall help to understand the future perspectives of biosimilars for use in gastro-entero-logic diseases, colorectal cancer, and thyroid cancer. They also help target specific organs with essential mutational categories and drug prototypes in clinical practices with blood and liquid biopsy, cell treatment, gene therapy, recombinant therapeutic proteins, and personalized medications. Biosimilar derivatives such as monoclonal antibodies like trastuzumab and rituximab are common drugs used in cancer therapy. <i>Escherichia coli</i> produces more than six antibodies or antibody-derived proteins to treat cancer such as filgrastim, epoetin alfa, and so on.</p>","PeriodicalId":100212,"journal":{"name":"Cancer Innovation","volume":"3 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cai2.115","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Innovation","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cai2.115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Biosimilars are biological drugs created from living organisms or that contain living components. They share an identical amino-acid sequence and immunogenicity. These drugs are considered to be cost-effective and are utilized in the treatment of cancer and other endocrine disorders. The primary aim of biosimilars is to predict biosimilarity, efficacy, and treatment costs; they are approved by the Food and Drug Administration (FDA) and have no clinical implications. They involve analytical studies to understand the similarities and dissimilarities. A biosimilar manufacturer sets up FDA-approved reference products to evaluate biosimilarity. The contribution of next-generation sequencing is evolving to study the organ tumor and its progression with its impactful therapeutic approach on cancer patients to showcase and target rare mutations. The study shall help to understand the future perspectives of biosimilars for use in gastro-entero-logic diseases, colorectal cancer, and thyroid cancer. They also help target specific organs with essential mutational categories and drug prototypes in clinical practices with blood and liquid biopsy, cell treatment, gene therapy, recombinant therapeutic proteins, and personalized medications. Biosimilar derivatives such as monoclonal antibodies like trastuzumab and rituximab are common drugs used in cancer therapy. Escherichia coli produces more than six antibodies or antibody-derived proteins to treat cancer such as filgrastim, epoetin alfa, and so on.