{"title":"An ensemble-based stage-prediction machine learning approach for classifying fetal disease","authors":"Dipti Dash, Mukesh Kumar","doi":"10.1016/j.health.2024.100322","DOIUrl":null,"url":null,"abstract":"<div><p>Fetal diseases often lead to the death of many babies during pregnancies. Machine learning and deep learning are promising technologies providing efficient and effective detection and treatment of various fetal diseases. We contribute to the medical field by addressing the critical challenge of fetal disease classification, a concern affecting females and infants. This study utilizes 22 features associated with fetal heart rate extracted from 2126 patient records within the Cardiotocography(CTG) datasets. Our classification system offers a cost-effective, efficient, and accurate solution. It classifies fetal diseases into three categories: Normal, Suspect, and Pathological, based on preprocessed data that underwent MinMax Scaling and employed dimensionality reduction techniques, including Principal Component Analysis(PCA) and Autoencoders. By incorporating dimensionality reduction techniques, the computation time has been reduced from 9 to 26 s to just 4 and 15 s, which is less than half of the original computation time. We assessed the performance of 11 standard machine learning algorithms and various performance metrics to identify the best classification model. We have applied the K-fold Cross-Validation technique to validate our model to improve machine learning models and identify the most effective algorithm. When the results are compared, it is observed that Extreme Gradient Boosting (XGBoost) gained the highest accuracy of 0.99% also highest precision 0.93% and outperformed all the other machine learning algorithms.</p></div>","PeriodicalId":73222,"journal":{"name":"Healthcare analytics (New York, N.Y.)","volume":"5 ","pages":"Article 100322"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772442524000248/pdfft?md5=1ec2d71fb8899c9d0caedcb3bbb691bb&pid=1-s2.0-S2772442524000248-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Healthcare analytics (New York, N.Y.)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772442524000248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Fetal diseases often lead to the death of many babies during pregnancies. Machine learning and deep learning are promising technologies providing efficient and effective detection and treatment of various fetal diseases. We contribute to the medical field by addressing the critical challenge of fetal disease classification, a concern affecting females and infants. This study utilizes 22 features associated with fetal heart rate extracted from 2126 patient records within the Cardiotocography(CTG) datasets. Our classification system offers a cost-effective, efficient, and accurate solution. It classifies fetal diseases into three categories: Normal, Suspect, and Pathological, based on preprocessed data that underwent MinMax Scaling and employed dimensionality reduction techniques, including Principal Component Analysis(PCA) and Autoencoders. By incorporating dimensionality reduction techniques, the computation time has been reduced from 9 to 26 s to just 4 and 15 s, which is less than half of the original computation time. We assessed the performance of 11 standard machine learning algorithms and various performance metrics to identify the best classification model. We have applied the K-fold Cross-Validation technique to validate our model to improve machine learning models and identify the most effective algorithm. When the results are compared, it is observed that Extreme Gradient Boosting (XGBoost) gained the highest accuracy of 0.99% also highest precision 0.93% and outperformed all the other machine learning algorithms.