{"title":"Thermal Hall effects in quantum magnets","authors":"Xiao-Tian Zhang , Yong Hao Gao , Gang Chen","doi":"10.1016/j.physrep.2024.03.004","DOIUrl":null,"url":null,"abstract":"<div><p>In the recent years, the thermal Hall transport has risen as an important diagnosis of the physical properties of the elementary excitations in various quantum materials, especially among the Mott insulating systems where the electronic transports are often featureless. Here we review the recent development of thermal Hall effects in quantum magnets where all the relevant excitations are charge-neutral. In addition to summarizing the existing experiments, we pay a special attention to the underlying mechanisms of the thermal Hall effects in various magnetic systems, and clarify the connection between the microscopic physical variables and the emergent degrees of freedom in different quantum phases. The external magnetic field is shown to modify the intrinsic Berry curvature properties of various emergent and/or exotic quasiparticle excitations in distinct fashions for different quantum systems and quantum phases, contributing to the thermal Hall transports. These include, for example, the conventional ones like the magnons in ordered magnets, the triplons in dimerized magnets, the exotic and fractionalized quasiparticles such as the spinons and the magnetic monopoles in quantum spin liquids. We review their contribution and discuss their presence in the thermal Hall conductivity in different physical contexts. We expect this review to provide a useful guidance for the physical mechanism of the thermal Hall transports in quantum magnets.</p></div>","PeriodicalId":404,"journal":{"name":"Physics Reports","volume":"1070 ","pages":"Pages 1-59"},"PeriodicalIF":23.9000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Reports","FirstCategoryId":"4","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0370157324001194","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In the recent years, the thermal Hall transport has risen as an important diagnosis of the physical properties of the elementary excitations in various quantum materials, especially among the Mott insulating systems where the electronic transports are often featureless. Here we review the recent development of thermal Hall effects in quantum magnets where all the relevant excitations are charge-neutral. In addition to summarizing the existing experiments, we pay a special attention to the underlying mechanisms of the thermal Hall effects in various magnetic systems, and clarify the connection between the microscopic physical variables and the emergent degrees of freedom in different quantum phases. The external magnetic field is shown to modify the intrinsic Berry curvature properties of various emergent and/or exotic quasiparticle excitations in distinct fashions for different quantum systems and quantum phases, contributing to the thermal Hall transports. These include, for example, the conventional ones like the magnons in ordered magnets, the triplons in dimerized magnets, the exotic and fractionalized quasiparticles such as the spinons and the magnetic monopoles in quantum spin liquids. We review their contribution and discuss their presence in the thermal Hall conductivity in different physical contexts. We expect this review to provide a useful guidance for the physical mechanism of the thermal Hall transports in quantum magnets.
期刊介绍:
Physics Reports keeps the active physicist up-to-date on developments in a wide range of topics by publishing timely reviews which are more extensive than just literature surveys but normally less than a full monograph. Each report deals with one specific subject and is generally published in a separate volume. These reviews are specialist in nature but contain enough introductory material to make the main points intelligible to a non-specialist. The reader will not only be able to distinguish important developments and trends in physics but will also find a sufficient number of references to the original literature.