A multivariate spatial and spatiotemporal ARCH Model

IF 2.1 2区 数学 Q3 GEOSCIENCES, MULTIDISCIPLINARY
Philipp Otto
{"title":"A multivariate spatial and spatiotemporal ARCH Model","authors":"Philipp Otto","doi":"10.1016/j.spasta.2024.100823","DOIUrl":null,"url":null,"abstract":"<div><p>This paper introduces a multivariate spatiotemporal autoregressive conditional heteroscedasticity (ARCH) model based on a vec-representation. The model includes instantaneous spatial autoregressive spill-over effects, as they are usually present in geo-referenced data. Furthermore, spatial and temporal cross-variable effects in the conditional variance are explicitly modelled. We transform the model to a multivariate spatiotemporal autoregressive model using a log-squared transformation and derive a consistent quasi-maximum-likelihood estimator (QMLE). For finite samples and different error distributions, the performance of the QMLE is analysed in a series of Monte-Carlo simulations. In addition, we illustrate the practical usage of the new model with a real-world example. We analyse the monthly real-estate price returns for three different property types in Berlin from 2002 to 2014. We find weak (instantaneous) spatial interactions, while the temporal autoregressive structure in the market risks is of higher importance. Interactions between the different property types only occur in the temporally lagged variables. Thus, we see mainly temporal volatility clusters and weak spatial volatility spillovers.</p></div>","PeriodicalId":48771,"journal":{"name":"Spatial Statistics","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2211675324000149/pdfft?md5=eb8563b57f62dc0654997c6b2209f850&pid=1-s2.0-S2211675324000149-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spatial Statistics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211675324000149","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces a multivariate spatiotemporal autoregressive conditional heteroscedasticity (ARCH) model based on a vec-representation. The model includes instantaneous spatial autoregressive spill-over effects, as they are usually present in geo-referenced data. Furthermore, spatial and temporal cross-variable effects in the conditional variance are explicitly modelled. We transform the model to a multivariate spatiotemporal autoregressive model using a log-squared transformation and derive a consistent quasi-maximum-likelihood estimator (QMLE). For finite samples and different error distributions, the performance of the QMLE is analysed in a series of Monte-Carlo simulations. In addition, we illustrate the practical usage of the new model with a real-world example. We analyse the monthly real-estate price returns for three different property types in Berlin from 2002 to 2014. We find weak (instantaneous) spatial interactions, while the temporal autoregressive structure in the market risks is of higher importance. Interactions between the different property types only occur in the temporally lagged variables. Thus, we see mainly temporal volatility clusters and weak spatial volatility spillovers.

多变量空间和时空 ARCH 模型
本文介绍了一种基于向量表示的多变量时空自回归条件异方差(ARCH)模型。该模型包括瞬时空间自回归溢出效应,因为它们通常存在于地理参照数据中。此外,条件方差中的空间和时间交叉变量效应也被明确建模。我们使用对数平方变换将模型转换为多变量时空自回归模型,并推导出一致的准最大似然估计器(QMLE)。对于有限样本和不同误差分布,我们通过一系列蒙特卡罗模拟分析了 QMLE 的性能。此外,我们还通过一个实际案例说明了新模型的实际应用。我们分析了 2002 年至 2014 年柏林三种不同物业类型的月度房地产价格回报。我们发现了微弱的(瞬时)空间相互作用,而市场风险中的时间自回归结构则更为重要。不同物业类型之间的相互作用仅出现在时间滞后变量中。因此,我们主要看到了时间波动集群和微弱的空间波动溢出效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Spatial Statistics
Spatial Statistics GEOSCIENCES, MULTIDISCIPLINARY-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.00
自引率
21.70%
发文量
89
审稿时长
55 days
期刊介绍: Spatial Statistics publishes articles on the theory and application of spatial and spatio-temporal statistics. It favours manuscripts that present theory generated by new applications, or in which new theory is applied to an important practical case. A purely theoretical study will only rarely be accepted. Pure case studies without methodological development are not acceptable for publication. Spatial statistics concerns the quantitative analysis of spatial and spatio-temporal data, including their statistical dependencies, accuracy and uncertainties. Methodology for spatial statistics is typically found in probability theory, stochastic modelling and mathematical statistics as well as in information science. Spatial statistics is used in mapping, assessing spatial data quality, sampling design optimisation, modelling of dependence structures, and drawing of valid inference from a limited set of spatio-temporal data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信