Indoor CO2 direct air capture and utilization: Key strategies towards carbon neutrality

IF 5.3 Q2 ENGINEERING, ENVIRONMENTAL
L.R. López , P. Dessì , A. Cabrera-Codony , L. Rocha-Melogno , N.J.R. Kraakman , M.D. Balaguer , S. Puig
{"title":"Indoor CO2 direct air capture and utilization: Key strategies towards carbon neutrality","authors":"L.R. López ,&nbsp;P. Dessì ,&nbsp;A. Cabrera-Codony ,&nbsp;L. Rocha-Melogno ,&nbsp;N.J.R. Kraakman ,&nbsp;M.D. Balaguer ,&nbsp;S. Puig","doi":"10.1016/j.clet.2024.100746","DOIUrl":null,"url":null,"abstract":"<div><p>Direct air capture (DAC) is a promising technology that can help to remove carbon dioxide (CO<sub>2</sub>) from the air. One application of DAC is indoor CO<sub>2</sub> direct air capture (iCO<sub>2</sub>-DAC). A wide range of materials with unique properties for CO<sub>2</sub> capture have been investigated, including porous materials, zeolites, and metal-organic frameworks. The selection of suitable materials for iCO<sub>2</sub>-DAC depends on several factors, such as cost, CO<sub>2</sub> adsorption capacity, and stability. The development of new materials with improved properties for iCO<sub>2</sub>-DAC is an active research area. The captured CO<sub>2</sub> can serve as a renewable carbon source to produce biofuels for internal use (e.g., for heating purposes), decreasing the environmental impact of buildings. This review article highlights the importance of iCO<sub>2</sub>-DAC to improve indoor air quality in buildings and boost the circular economy. We discuss the available carbon capture technologies and materials, discussing their properties and focusing on those potentially applicable to indoor environments. We also provide a hypothetic scenario where CO<sub>2</sub> is captured from different indoor environments and transformed into sustainable fuels by using an emerging carbon capture and utilization technology (microbial electrosynthesis). Finally, we evaluate the economic feasibility of such an innovative approach in comparison to the use of traditional, fossil-based fuels.</p></div>","PeriodicalId":34618,"journal":{"name":"Cleaner Engineering and Technology","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666790824000260/pdfft?md5=315c923a4c80c3fe39361dbb58bd9d96&pid=1-s2.0-S2666790824000260-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666790824000260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Direct air capture (DAC) is a promising technology that can help to remove carbon dioxide (CO2) from the air. One application of DAC is indoor CO2 direct air capture (iCO2-DAC). A wide range of materials with unique properties for CO2 capture have been investigated, including porous materials, zeolites, and metal-organic frameworks. The selection of suitable materials for iCO2-DAC depends on several factors, such as cost, CO2 adsorption capacity, and stability. The development of new materials with improved properties for iCO2-DAC is an active research area. The captured CO2 can serve as a renewable carbon source to produce biofuels for internal use (e.g., for heating purposes), decreasing the environmental impact of buildings. This review article highlights the importance of iCO2-DAC to improve indoor air quality in buildings and boost the circular economy. We discuss the available carbon capture technologies and materials, discussing their properties and focusing on those potentially applicable to indoor environments. We also provide a hypothetic scenario where CO2 is captured from different indoor environments and transformed into sustainable fuels by using an emerging carbon capture and utilization technology (microbial electrosynthesis). Finally, we evaluate the economic feasibility of such an innovative approach in comparison to the use of traditional, fossil-based fuels.

室内二氧化碳直接空气捕获和利用:实现碳中和的关键战略
直接空气捕集(DAC)是一项前景广阔的技术,有助于去除空气中的二氧化碳(CO2)。室内二氧化碳直接空气捕集(iCO2-DAC)是 DAC 的一项应用。目前已对多种具有独特性能的二氧化碳捕集材料进行了研究,包括多孔材料、沸石和金属有机框架。为 iCO2-DAC 选择合适的材料取决于多个因素,如成本、二氧化碳吸附能力和稳定性。为 iCO2-DAC 开发性能更好的新材料是一个活跃的研究领域。捕获的二氧化碳可作为一种可再生碳源,用于生产内部使用的生物燃料(如供暖),从而减少建筑物对环境的影响。这篇综述文章强调了 iCO2-DAC 对改善建筑物室内空气质量和促进循环经济的重要性。我们讨论了现有的碳捕集技术和材料,讨论了它们的特性,并重点介绍了可能适用于室内环境的技术和材料。我们还提供了一种假设情景,即利用一种新兴的碳捕获和利用技术(微生物电合成)从不同的室内环境中捕获二氧化碳,并将其转化为可持续燃料。最后,与使用传统的化石燃料相比,我们对这种创新方法的经济可行性进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cleaner Engineering and Technology
Cleaner Engineering and Technology Engineering-Engineering (miscellaneous)
CiteScore
9.80
自引率
0.00%
发文量
218
审稿时长
21 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信