{"title":"Development of a microfluidic-assisted open-source 3D bioprinting system (MOS3S) for the engineering of hierarchical tissues","authors":"Sajad Mohammadi , Salvatore D’Alessandro , Fabiano Bini , Franco Marinozzi , Gianluca Cidonio","doi":"10.1016/j.ohx.2024.e00527","DOIUrl":null,"url":null,"abstract":"<div><p>The engineering of new 3D bioprinting approaches has shown great promise in the field of tissue engineering and disease modelling. However, the high cost of commercial 3D bioprinters has limited their accessibility, especially to those laboratories in resource-limited settings. Moreover, the need for a 3D bioprinting system capable of dispensing multiple materials is growing apace. Therefore, the development of a Microfluidic-assisted Open Source 3D bioprinting System (MOS3S) for the engineering of hierarchical tissues is needed to progress in fabricating functional tissues, but with a technology accessible to a wider range of researchers. The MOS3S platform is designed to allow the deposition of biomaterial inks using microfluidic printheads or coaxial nozzles for the <em>in-situ</em> crosslinking and scaffolds fabrication. The coupling of 3D printed syringe pumps with the motion control system is used for driving the tunable extrusion of inks for the fabrication of centimeter scale hierarchical lattice constructs for tissue engineering purposes. MOS3S performance have been validated to fabricate high-resolution structures with coaxial microfluidic technology, opening to new frontiers for seminal studies in pre-clinical disease modelling and tissue regeneration.</p></div>","PeriodicalId":37503,"journal":{"name":"HardwareX","volume":"18 ","pages":"Article e00527"},"PeriodicalIF":2.0000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S246806722400021X/pdfft?md5=446bbad68767afaeac425d2c0dfbea04&pid=1-s2.0-S246806722400021X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HardwareX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S246806722400021X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The engineering of new 3D bioprinting approaches has shown great promise in the field of tissue engineering and disease modelling. However, the high cost of commercial 3D bioprinters has limited their accessibility, especially to those laboratories in resource-limited settings. Moreover, the need for a 3D bioprinting system capable of dispensing multiple materials is growing apace. Therefore, the development of a Microfluidic-assisted Open Source 3D bioprinting System (MOS3S) for the engineering of hierarchical tissues is needed to progress in fabricating functional tissues, but with a technology accessible to a wider range of researchers. The MOS3S platform is designed to allow the deposition of biomaterial inks using microfluidic printheads or coaxial nozzles for the in-situ crosslinking and scaffolds fabrication. The coupling of 3D printed syringe pumps with the motion control system is used for driving the tunable extrusion of inks for the fabrication of centimeter scale hierarchical lattice constructs for tissue engineering purposes. MOS3S performance have been validated to fabricate high-resolution structures with coaxial microfluidic technology, opening to new frontiers for seminal studies in pre-clinical disease modelling and tissue regeneration.
HardwareXEngineering-Industrial and Manufacturing Engineering
CiteScore
4.10
自引率
18.20%
发文量
124
审稿时长
24 weeks
期刊介绍:
HardwareX is an open access journal established to promote free and open source designing, building and customizing of scientific infrastructure (hardware). HardwareX aims to recognize researchers for the time and effort in developing scientific infrastructure while providing end-users with sufficient information to replicate and validate the advances presented. HardwareX is open to input from all scientific, technological and medical disciplines. Scientific infrastructure will be interpreted in the broadest sense. Including hardware modifications to existing infrastructure, sensors and tools that perform measurements and other functions outside of the traditional lab setting (such as wearables, air/water quality sensors, and low cost alternatives to existing tools), and the creation of wholly new tools for either standard or novel laboratory tasks. Authors are encouraged to submit hardware developments that address all aspects of science, not only the final measurement, for example, enhancements in sample preparation and handling, user safety, and quality control. The use of distributed digital manufacturing strategies (e.g. 3-D printing) is encouraged. All designs must be submitted under an open hardware license.