Low Phase Noise 104 GHz Oscillator Using Self-Aligned On-Chip Voltage-Tunable Spherical Dielectric Resonator in 130-nm SiGe BiCMOS

Yu Zhu, Georg Sterzl, Jan Hesselbarth, T. Meister, Frank Ellinger
{"title":"Low Phase Noise 104 GHz Oscillator Using Self-Aligned On-Chip Voltage-Tunable Spherical Dielectric Resonator in 130-nm SiGe BiCMOS","authors":"Yu Zhu, Georg Sterzl, Jan Hesselbarth, T. Meister, Frank Ellinger","doi":"10.1109/SiRF59913.2024.10438549","DOIUrl":null,"url":null,"abstract":"This paper studies a low phase noise voltage-controlled oscillator that is based on a self-aligned on-chip voltage-tunable spherical dielectric resonator. The proposed resonator has been designed for millimeter-wave applications, provides a high quality factor and is voltage controlled. To prove the concept, the circuit is implemented in a 130-nm SiGe BiCMOS technology. It consists of a two stage amplifier and a microstrip feedback path which couples to the resonator. Measurement results demonstrate a phase noise of −95.9 dBc/Hz at 10 MHz offset from the oscillation frequency at 104.03 GHz and a frequency tuning range of 88 MHz. A maximum output power of −9.9 dBm from 32.5 mW dc power is achieved. Simulations based on measurements of the on-chip spherical dielectric resonator indicate that circuit optimizations will lead to an excellent phase noise of −114.8 dBc/Hz at 10 MHz offset. To the best of the authors’ knowledge, this circuit is the first reported silicon-based MMIC voltage-controlled oscillator using an on-chip dielectric resonator at millimeter-wave band.","PeriodicalId":518479,"journal":{"name":"2024 IEEE 24th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF)","volume":"23 2","pages":"83-86"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 IEEE 24th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SiRF59913.2024.10438549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper studies a low phase noise voltage-controlled oscillator that is based on a self-aligned on-chip voltage-tunable spherical dielectric resonator. The proposed resonator has been designed for millimeter-wave applications, provides a high quality factor and is voltage controlled. To prove the concept, the circuit is implemented in a 130-nm SiGe BiCMOS technology. It consists of a two stage amplifier and a microstrip feedback path which couples to the resonator. Measurement results demonstrate a phase noise of −95.9 dBc/Hz at 10 MHz offset from the oscillation frequency at 104.03 GHz and a frequency tuning range of 88 MHz. A maximum output power of −9.9 dBm from 32.5 mW dc power is achieved. Simulations based on measurements of the on-chip spherical dielectric resonator indicate that circuit optimizations will lead to an excellent phase noise of −114.8 dBc/Hz at 10 MHz offset. To the best of the authors’ knowledge, this circuit is the first reported silicon-based MMIC voltage-controlled oscillator using an on-chip dielectric resonator at millimeter-wave band.
利用 130 纳米 SiGe BiCMOS 中的自对准片上电压可调球形介质谐振器实现 104 GHz 低相位噪声振荡器
本文研究了一种低相位噪声压控振荡器,该振荡器基于自对准片上电压可调球形介质谐振器。所提出的谐振器专为毫米波应用而设计,具有高品质因数和压控特性。为了证明这一概念,该电路采用了 130 纳米 SiGe BiCMOS 技术。它由一个两级放大器和一条耦合到谐振器的微带反馈路径组成。测量结果表明,在 104.03 GHz 振荡频率偏移 10 MHz 时,相位噪声为 -95.9 dBc/Hz,频率调谐范围为 88 MHz。在 32.5 mW 直流电源下的最大输出功率为 -9.9 dBm。根据对片上球形介质谐振器的测量结果进行的仿真表明,电路优化将使 10 MHz 偏移时的相位噪声达到出色的 -114.8 dBc/Hz。据作者所知,该电路是首次报道的在毫米波频段使用片上介质谐振器的硅基 MMIC 电压控制振荡器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信