A Dispersion-Engineered YX-LN/SIO2/Sapphire SH-SAW Resonator for Enhanced Electromechanical Coupling and Rayleigh Mode Suppression

Tzu-Hsuan Hsu, Zhi-Qiang Lee, Chia-Hsien Tsai, Vakhtang Chulukhadze, Cheng-Chien Lin, Ya-Ching Yu, Ruochen Lu, Ming-Huang Li
{"title":"A Dispersion-Engineered YX-LN/SIO2/Sapphire SH-SAW Resonator for Enhanced Electromechanical Coupling and Rayleigh Mode Suppression","authors":"Tzu-Hsuan Hsu, Zhi-Qiang Lee, Chia-Hsien Tsai, Vakhtang Chulukhadze, Cheng-Chien Lin, Ya-Ching Yu, Ruochen Lu, Ming-Huang Li","doi":"10.1109/MEMS58180.2024.10439591","DOIUrl":null,"url":null,"abstract":"In this work, an optimized shear-horizontal surface acoustic wave (SH-SAW) resonator based on YX-LN/SiO2/Sapphire (LNOS) functional substrate is demonstrated with a large electromechanical coupling coefficient $\\left( {k_{{\\text{eff}}}^2} \\right)$ and high quality factor (Q), while effectively mitigating the Rayleigh SAW (R-SAW). Although the LN/SiO2 hetero acoustic stacking offers excellent acoustic energy confinement for SH-SAW operation, it generates significant R-SAW as an unintended byproduct alongside the targeted mode. Through detailed numerical simulations, we revealed that when these two modes are in close proximity, their electromechanical coupling undergoes drastic variations. Therefore, specific design ranges can be found to enhance the SH-SAW while simultaneously eliminating the $k_{{\\text{eff}}}^2$ of R-SAW. As a proof-of-concept, one $k_{{\\text{eff}}}^2$-enhanced design is experimentally verified, exhibiting a large $k_{{\\text{eff}}}^2$ of 47%, a high Bode-Q (Qmax) of 1,000, yielding an excellent figure-of-merit $\\left( {{\\text{FoM}} = k_{{\\text{eff}}}^2\\cdot{Q_{\\max }}} \\right)$ of 470 at 1 GHz, with successful suppression of the R-SAW.","PeriodicalId":518439,"journal":{"name":"2024 IEEE 37th International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"230 1","pages":"27-30"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 IEEE 37th International Conference on Micro Electro Mechanical Systems (MEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMS58180.2024.10439591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this work, an optimized shear-horizontal surface acoustic wave (SH-SAW) resonator based on YX-LN/SiO2/Sapphire (LNOS) functional substrate is demonstrated with a large electromechanical coupling coefficient $\left( {k_{{\text{eff}}}^2} \right)$ and high quality factor (Q), while effectively mitigating the Rayleigh SAW (R-SAW). Although the LN/SiO2 hetero acoustic stacking offers excellent acoustic energy confinement for SH-SAW operation, it generates significant R-SAW as an unintended byproduct alongside the targeted mode. Through detailed numerical simulations, we revealed that when these two modes are in close proximity, their electromechanical coupling undergoes drastic variations. Therefore, specific design ranges can be found to enhance the SH-SAW while simultaneously eliminating the $k_{{\text{eff}}}^2$ of R-SAW. As a proof-of-concept, one $k_{{\text{eff}}}^2$-enhanced design is experimentally verified, exhibiting a large $k_{{\text{eff}}}^2$ of 47%, a high Bode-Q (Qmax) of 1,000, yielding an excellent figure-of-merit $\left( {{\text{FoM}} = k_{{\text{eff}}}^2\cdot{Q_{\max }}} \right)$ of 470 at 1 GHz, with successful suppression of the R-SAW.
用于增强机电耦合和瑞利模式抑制的弥散工程化 YX-LN/SIO2/Sapphire SH-SAW 谐振器
在这项工作中,基于 YX-LN/SiO2/Sapphire (LNOS) 功能衬底的优化剪切-水平表面声波(SH-SAW)谐振器得到了证实,它具有较大的机电耦合系数 $\left({k_{\{eff}}^2}\right)$和较高的品质因数 (Q),同时有效地减轻了雷利声表面波(R-SAW)。虽然 LN/SiO2 异质声学堆叠为 SH-SAW 操作提供了出色的声能约束,但它会产生大量 R-SAW 作为目标模式的意外副产品。通过详细的数值模拟,我们发现当这两种模式靠近时,它们的机电耦合会发生剧烈变化。因此,可以找到特定的设计范围,在增强 SH-SAW 的同时消除 R-SAW 的 $k_{{text/{eff}}^2$。作为概念验证,一种 $k_{{\text{eff}}^2$ 增强设计得到了实验验证,显示出 47% 的大 $k_{{\text{eff}}^2$,1、000,在 1 GHz 时的功耗为 470 美元,成功抑制了 R-SAW 的产生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信